音乐类型分类一直是音乐信息检索领域研究的热点问题。在本教程中,我们将尝试使用隐马尔可夫模型对音乐类型进行分类,隐马尔可夫模型非常擅长对时间序列数据进行建模。由于音乐音频文件是时间序列信号,我们希望HMM能够满足我们的需求,给我们一个准确的分类。隐马尔可夫模
在网上看到一篇关于隐马尔科夫模型的介绍,觉得简直不能再神奇,又在网上找到大神的一篇关于如何用隐马尔可夫模型实现中文拼音输入的博客,无奈大神没给可以运行的代码,只能纯手动网上找到了结巴分词的词库,根据此训练得出隐马尔科夫模型,用维特比算法实现了一个简单的拼音
隐马尔可夫模型维特比算法详解关于隐马尔可夫模型的维特比解码算法网上已有一大批文章介绍,故本文不再介绍。本文主要是在读《自然语言处理简明教程》和看HanLP 中文人名识别源码过程中,对该算法的一次梳理,以防忘记。那么\就是求解 \ 和 \ 的一个重叠子问题。
比如nlp中常见的词性标注任务就经常用HMM,其中显状态就是单词,而隐状态为词性,通过我们观察到的单词序列去标出隐含的词性。隐马尔科夫模型隐马尔科夫模型是一种有向图模型,图模型能清晰表达变量相关关系的概率,常见的图模型还有条件随机场,节点表示变量,节点之间
安科网(Ancii),中国第一极客网
Copyright © 2013 - 2019 Ancii.com
京ICP备18063983号-5 京公网安备11010802014868号