这个时候会出现矩阵不可逆的情况,为什么呢?遇到这种情况,我们可以采用正则化的方式或者剔除多余特征,这里我们介绍一些正则化的方式,例如岭回归、lasso,以及另外的一种方法:前向逐步回归。在数学,统计学和计算机科学中,尤其是在机器学习和逆问题中,正则化是添加
岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。岭回归 在机器学习中解决了数据过度
也有些正则方法可以限制回归算法输出结果中系数的影响,其中最常用的两种正则方法是lasso回归和岭回归。lasso回归和岭回归算法跟常规线性回归算法极其相似,有一点不同的是,在公式中增加正则项来限制斜率。这样做的主要原因是限制特征对因变量的影响,通过增加一个
安科网(Ancii),中国第一极客网
Copyright © 2013 - 2019 Ancii.com
京ICP备18063983号-5 京公网安备11010802014868号