auto-sklearn 自动化的机器学习工具包 项目简介
auto-sklearn是一个自动化的机器学习工具包,是scikit-learn估算器的直接替代品:>>> import autosklearn.classification
>>> cls = autosklearn.classification.AutoSklearnClassifier()
>>> cls.fit(X_train, y_train)
>>> predictions = cls.predict(X_test)auto-sklearn使机器学习用户从算法选择和超参数调整中解放出来。 它利用了贝叶斯优化,元学习和集合构造的最新优势。 阅读在NIPS 2015上发表的论文,了解有关auto-sklearn背后技术的更多信息。>>> import autosklearn.classification
>>> import sklearn.model_selection
>>> import sklearn.datasets
>>> import sklearn.metrics
>>> X, y = sklearn.datasets.load_digits(return_X_y=True)
>>> X_train, X_test, y_train, y_test = \
sklearn.model_selection.train_test_split(X, y, random_state=1)
>>> automl = autosklearn.classification.AutoSklearnClassifier()
>>> automl.fit(X_train, y_train)
>>> y_hat = automl.predict(X_test)
>>> print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))
>>> cls = autosklearn.classification.AutoSklearnClassifier()
>>> cls.fit(X_train, y_train)
>>> predictions = cls.predict(X_test)auto-sklearn使机器学习用户从算法选择和超参数调整中解放出来。 它利用了贝叶斯优化,元学习和集合构造的最新优势。 阅读在NIPS 2015上发表的论文,了解有关auto-sklearn背后技术的更多信息。>>> import autosklearn.classification
>>> import sklearn.model_selection
>>> import sklearn.datasets
>>> import sklearn.metrics
>>> X, y = sklearn.datasets.load_digits(return_X_y=True)
>>> X_train, X_test, y_train, y_test = \
sklearn.model_selection.train_test_split(X, y, random_state=1)
>>> automl = autosklearn.classification.AutoSklearnClassifier()
>>> automl.fit(X_train, y_train)
>>> y_hat = automl.predict(X_test)
>>> print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))