一次 group by + order by 性能优化分析
原文:我的个人博客 https://mengkang.net/1302.html
工作了两三年,技术停滞不前,迷茫没有方向,不如看下我的直播 PHP 进阶之路 (金三银四跳槽必考,一般人我不告诉他)
最近通过一个日志表做排行的时候发现特别卡,最后问题得到了解决,梳理一些索引和MySQL执行过程的经验,但是最后还是有5个谜题没解开,希望大家帮忙解答下
主要包含如下知识点
- 用数据说话证明慢日志的扫描行数到底是如何统计出来的
- 从 group by 执行原理找出优化方案
- 排序的实现细节
- gdb 源码调试
背景
需要分别统计本月、本周被访问的文章的 TOP10。日志表如下
CREATE TABLE `article_rank` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `aid` int(11) unsigned NOT NULL, `pv` int(11) unsigned NOT NULL DEFAULT '1', `day` int(11) NOT NULL COMMENT '日期 例如 20171016', PRIMARY KEY (`id`), KEY `idx_day_aid_pv` (`day`,`aid`,`pv`), KEY `idx_aid_day_pv` (`aid`,`day`,`pv`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8
准备工作
为了能够清晰的验证自己的一些猜想,在虚拟机里安装了一个 debug 版的 mysql,然后开启了慢日志收集,用于统计扫描行数
安装
- 下载源码
- 编译安装
- 创建 mysql 用户
- 初始化数据库
- 初始化 mysql 配置文件
- 修改密码
如果你兴趣,具体可以参考我的博客,一步步安装 https://mengkang.net/1335.html
开启慢日志
编辑配置文件,在[mysqld]
块下添加
slow_query_log=1 slow_query_log_file=xxx long_query_time=0 log_queries_not_using_indexes=1
性能分析
发现问题
假如我需要查询2018-12-20
~ 2018-12-24
这5天浏览量最大的10篇文章的 sql 如下,首先使用explain
看下分析结果
mysql> explain select aid,sum(pv) as num from article_rank where day>=20181220 and day<=20181224 group by aid order by num desc limit 10; +----+-------------+--------------+------------+-------+-------------------------------+----------------+---------+------+--------+----------+-----------------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+--------------+------------+-------+-------------------------------+----------------+---------+------+--------+----------+-----------------------------------------------------------+ | 1 | SIMPLE | article_rank | NULL | range | idx_day_aid_pv,idx_aid_day_pv | idx_day_aid_pv | 4 | NULL | 404607 | 100.00 | Using where; Using index; Using temporary; Using filesort | +----+-------------+--------------+------------+-------+-------------------------------+----------------+---------+------+--------+----------+-----------------------------------------------------------+
系统默认会走的索引是idx_day_aid_pv
,根据Extra
信息我们可以看到,使用idx_day_aid_pv
索引的时候,会走覆盖索引,但是会使用临时表,会有排序。
我们查看下慢日志里的记录信息
# Time: 2019-03-17T03:02:27.984091Z # User@Host: root[root] @ localhost [] Id: 6 # Query_time: 56.959484 Lock_time: 0.000195 Rows_sent: 10 Rows_examined: 1337315 SET timestamp=1552791747; select aid,sum(pv) as num from article_rank where day>=20181220 and day<=20181224 group by aid order by num desc limit 10;
为什么扫描行数是 1337315
我们查询两个数据,一个是满足条件的行数,一个是group by
统计之后的行数。
mysql> select count(*) from article_rank where day>=20181220 and day<=20181224; +----------+ | count(*) | +----------+ | 785102 | +----------+ mysql> select count(distinct aid) from article_rank where day>=20181220 and day<=20181224; +---------------------+ | count(distinct aid) | +---------------------+ | 552203 | +---------------------+
发现满足条件的总行数(785102)
+group by 之后的总行数(552203)
+limit 的值
= 慢日志里统计的 Rows_examined
。
要解答这个问题,就必须搞清楚上面这个 sql 到底分别都是如何运行的。
执行流程分析
索引示例
为了便于理解,我按照索引的规则先模拟idx_day_aid_pv
索引的一小部分数据
day | aid | pv | id |
---|---|---|---|
20181220 | 1 | 23 | 1234 |
20181220 | 3 | 2 | 1231 |
20181220 | 4 | 1 | 1212 |
20181220 | 7 | 2 | 1221 |
20181221 | 1 | 5 | 1257 |
20181221 | 10 | 1 | 1251 |
20181221 | 11 | 8 | 1258 |
因为索引idx_day_aid_pv
最左列是day
,所以当我们需要查找20181220
~20181224
之间的文章的pv总和的时候,我们需要遍历20181220
~20181224
这段数据的索引。
查看 optimizer trace 信息
# 开启 optimizer_trace set optimizer_trace='enabled=on'; # 执行 sql select aid,sum(pv) as num from article_rank where day>=20181220 and day<=20181224 group by aid order by num desc limit 10; # 查看 trace 信息 select trace from `information_schema`.`optimizer_trace`\G;
摘取里面最后的执行结果如下
{ "join_execution": { "select#": 1, "steps": [ { "creating_tmp_table": { "tmp_table_info": { "table": "intermediate_tmp_table", "row_length": 20, "key_length": 4, "unique_constraint": false, "location": "memory (heap)", "row_limit_estimate": 838860 } } }, { "converting_tmp_table_to_ondisk": { "cause": "memory_table_size_exceeded", "tmp_table_info": { "table": "intermediate_tmp_table", "row_length": 20, "key_length": 4, "unique_constraint": false, "location": "disk (InnoDB)", "record_format": "fixed" } } }, { "filesort_information": [ { "direction": "desc", "table": "intermediate_tmp_table", "field": "num" } ], "filesort_priority_queue_optimization": { "limit": 10, "rows_estimate": 1057, "row_size": 36, "memory_available": 262144, "chosen": true }, "filesort_execution": [ ], "filesort_summary": { "rows": 11, "examined_rows": 552203, "number_of_tmp_files": 0, "sort_buffer_size": 488, "sort_mode": "<sort_key, additional_fields>" } } ] } }
分析临时表字段
mysql gdb 调试更多细节 https://mengkang.net/1336.html
通过gdb
调试确认临时表上的字段是aid
和num
Breakpoint 1, trace_tmp_table (trace=0x7eff94003088, table=0x7eff94937200) at /root/newdb/mysql-server/sql/sql_tmp_table.cc:2306 warning: Source file is more recent than executable. 2306 trace_tmp.add("row_length",table->s->reclength). (gdb) p table->s->reclength $1 = 20 (gdb) p table->s->fields $2 = 2 (gdb) p (*(table->field+0))->field_name $3 = 0x7eff94010b0c "aid" (gdb) p (*(table->field+1))->field_name $4 = 0x7eff94007518 "num" (gdb) p (*(table->field+0))->row_pack_length() $5 = 4 (gdb) p (*(table->field+1))->row_pack_length() $6 = 15 (gdb) p (*(table->field+0))->type() $7 = MYSQL_TYPE_LONG (gdb) p (*(table->field+1))->type() $8 = MYSQL_TYPE_NEWDECIMAL (gdb)
通过上面的打印,确认了字段类型,一个aid
是MYSQL_TYPE_LONG
,占4
字节,num
是MYSQL_TYPE_NEWDECIMAL
,占15字节。
The SUM() and AVG() functions return a DECIMAL value for exact-value arguments (integer or DECIMAL), and a DOUBLE value for approximate-value arguments (FLOAT or DOUBLE). (Before MySQL 5.0.3, SUM() and AVG() return DOUBLE for all numeric arguments.)
但是通过我们上面打印信息可以看到两个字段的长度加起来是19
,而optimizer_trace
里的tmp_table_info.reclength
是20
。通过其他实验也发现table->s->reclength
的长度就是table->field
数组里面所有字段的字段长度和再加1。
总结执行流程
- 尝试在堆上使用
memory
的内存临时表来存放group by
的数据,发现内存不够; - 创建一张临时表,临时表上有两个字段,
aid
和num
字段(sum(pv) as num
); - 从索引
idx_day_aid_pv
中取出1行,插入临时表。插入规则是如果aid
不存在则直接插入,如果存在,则把pv
的值累加在num
上; - 循环遍历索引
idx_day_aid_pv
上20181220
~20181224
之间的所有行,执行步骤3; - 对临时表根据
num
的值做优先队列排序; - 取出最后留在堆(优先队列的堆)里面的10行数据,作为结果集直接返回,不需要再回表;
补充说明优先队列排序执行步骤分析:
- 在临时表(未排序)中取出前 10 行,把其中的
num
和aid
作为10个元素构成一个小顶堆,也就是最小的 num 在堆顶。 - 取下一行,根据 num 的值和堆顶值作比较,如果该字大于堆顶的值,则替换掉。然后将新的堆做堆排序。
- 重复步骤2直到第 552203 行比较完成。
优化
方案1 使用 idx_aid_day_pv 索引
# Query_time: 4.406927 Lock_time: 0.000200 Rows_sent: 10 Rows_examined: 1337315 SET timestamp=1552791804; select aid,sum(pv) as num from article_rank force index(idx_aid_day_pv) where day>=20181220 and day<=20181224 group by aid order by num desc limit 10;
扫描行数都是1337315
,为什么执行消耗的时间上快了12
倍呢?
索引示例
为了便于理解,同样我也按照索引的规则先模拟idx_aid_day_pv
索引的一小部分数据
aid | day | pv | id |
---|---|---|---|
1 | 20181220 | 23 | 1234 |
1 | 20181221 | 5 | 1257 |
3 | 20181220 | 2 | 1231 |
3 | 20181222 | 22 | 1331 |
3 | 20181224 | 13 | 1431 |
4 | 20181220 | 1 | 1212 |
7 | 20181220 | 2 | 1221 |
10 | 20181221 | 1 | 1251 |
11 | 20181221 | 8 | 1258 |
group by 不需要临时表的情况
为什么性能上比 SQL1 高了,很多呢,原因之一是idx_aid_day_pv
索引上aid
是确定有序的,那么执行group by
的时候,则不会创建临时表,排序的时候才需要临时表。如果印证这一点呢,我们通过下面的执行计划就能看到
使用idx_day_aid_pv
索引的效果:
mysql> explain select aid,sum(pv) as num from article_rank force index(idx_day_aid_pv) where day>=20181220 and day<=20181224 group by aid order by null limit 10; +----+-------------+--------------+------------+-------+-------------------------------+----------------+---------+------+--------+----------+-------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+--------------+------------+-------+-------------------------------+----------------+---------+------+--------+----------+-------------------------------------------+ | 1 | SIMPLE | article_rank | NULL | range | idx_day_aid_pv,idx_aid_day_pv | idx_day_aid_pv | 4 | NULL | 404607 | 100.00 | Using where; Using index; Using temporary | +----+-------------+--------------+------------+-------+-------------------------------+----------------+---------+------+--------+----------+-------------------------------------------+
注意我上面使用了order by null
表示强制对group by
的结果不做排序。如果不加order by null
,上面的 sql 则会出现Using filesort
使用idx_aid_day_pv
索引的效果:
mysql> explain select aid,sum(pv) as num from article_rank force index(idx_aid_day_pv) where day>=20181220 and day<=20181224 group by aid order by null limit 10; +----+-------------+--------------+------------+-------+-------------------------------+----------------+---------+------+------+----------+--------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+--------------+------------+-------+-------------------------------+----------------+---------+------+------+----------+--------------------------+ | 1 | SIMPLE | article_rank | NULL | index | idx_day_aid_pv,idx_aid_day_pv | idx_aid_day_pv | 12 | NULL | 10 | 11.11 | Using where; Using index | +----+-------------+--------------+------------+-------+-------------------------------+----------------+---------+------+------+----------+--------------------------+
查看 optimizer trace 信息
# 开启optimizer_trace set optimizer_trace='enabled=on'; # 执行 sql select aid,sum(pv) as num from article_rank force index(idx_aid_day_pv) where day>=20181220 and day<=20181224 group by aid order by num desc limit 10; # 查看 trace 信息 select trace from `information_schema`.`optimizer_trace`\G;
摘取里面最后的执行结果如下
{ "join_execution": { "select#": 1, "steps": [ { "creating_tmp_table": { "tmp_table_info": { "table": "intermediate_tmp_table", "row_length": 20, "key_length": 0, "unique_constraint": false, "location": "memory (heap)", "row_limit_estimate": 838860 } } }, { "filesort_information": [ { "direction": "desc", "table": "intermediate_tmp_table", "field": "num" } ], "filesort_priority_queue_optimization": { "limit": 10, "rows_estimate": 552213, "row_size": 24, "memory_available": 262144, "chosen": true }, "filesort_execution": [ ], "filesort_summary": { "rows": 11, "examined_rows": 552203, "number_of_tmp_files": 0, "sort_buffer_size": 352, "sort_mode": "<sort_key, rowid>" } } ] } }
执行流程如下
- 创建一张临时表,临时表上有两个字段,
aid
和num
字段(sum(pv) as num
); - 读取索引
idx_aid_day_pv
中的一行,然后查看是否满足条件,如果day
字段不在条件范围内(20181220
~20181224
之间),则读取下一行;如果day
字段在条件范围内,则把pv
值累加(不是在临时表中操作); - 读取索引
idx_aid_day_pv
中的下一行,如果aid
与步骤1中一致且满足条件,则pv
值累加(不是在临时表中操作)。如果aid
与步骤1中不一致,则把之前的结果集写入临时表; - 循环执行步骤2、3,直到扫描完整个
idx_aid_day_pv
索引; - 对临时表根据
num
的值做优先队列排序; - 根据查询到的前10条的
rowid
回表(临时表)返回结果集。
补充说明优先队列排序执行步骤分析:
- 在临时表(未排序)中取出前 10 行,把其中的
num
和rowid
作为10个元素构成一个小顶堆,也就是最小的 num 在堆顶。 - 取下一行,根据 num 的值和堆顶值作比较,如果该字大于堆顶的值,则替换掉。然后将新的堆做堆排序。
- 重复步骤2直到第 552203 行比较完成。
该方案可行性
实验发现,当我增加一行20181219
的数据时,虽然这行记录不满足我们的需求,但是扫描索引的也会读取这行。因为我做这个实验,只弄了20181220
~20181224
5天的数据,所以需要扫描的行数正好是全表数据行数。
那么如果该表的数据存储的不是5天的数据,而是10天的数据呢,更或者是365天的数据呢?这个方案是否还可行呢?先模拟10天的数据,在现有时间基础上往后加5天,行数与现在一样785102
行。
drop procedure if exists idata; delimiter ;; create procedure idata() begin declare i int; declare aid int; declare pv int; declare post_day int; set i=1; while(i<=785102)do set aid = round(rand()*500000); set pv = round(rand()*100); set post_day = 20181225 + i%5; insert into article_rank (`aid`,`pv`,`day`) values(aid, pv, post_day); set i=i+1; end while; end;; delimiter ; call idata();
# Query_time: 9.151270 Lock_time: 0.000508 Rows_sent: 10 Rows_examined: 2122417 SET timestamp=1552889936; select aid,sum(pv) as num from article_rank force index(idx_aid_day_pv) where day>=20181220 and day<=20181224 group by aid order by num desc limit 10;
这里扫描行数2122417
是因为扫描索引的时候需要遍历整个索引,整个索引的行数就是全表行数,因为我刚刚又插入了785102
行。
当我数据量翻倍之后,这里查询时间明显已经翻倍。所以这个优化方式不稳定。
方案2 扩充临时表空间上限大小
默认的临时表空间大小是16MB
mysql> show global variables like '%table_size'; +---------------------+----------+ | Variable_name | Value | +---------------------+----------+ | max_heap_table_size | 16777216 | | tmp_table_size | 16777216 | +---------------------+----------+
https://dev.mysql.com/doc/ref...
https://dev.mysql.com/doc/ref...max_heap_table_size
This variable sets the maximum size to which user-created MEMORY tables are permitted to grow. The value of the variable is used to calculate MEMORY table MAX_ROWS values. Setting this variable has no effect on any existing MEMORY table, unless the table is re-created with a statement such as CREATE TABLE or altered with ALTER TABLE or TRUNCATE TABLE. A server restart also sets the maximum size of existing MEMORY tables to the global max_heap_table_size value.tmp_table_size
The maximum size of internal in-memory temporary tables. This variable does not apply to user-created MEMORY tables.
The actual limit is determined from whichever of the values of tmp_table_size and max_heap_table_size is smaller. If an in-memory temporary table exceeds the limit, MySQL automatically converts it to an on-disk temporary table. The internal_tmp_disk_storage_engine option defines the storage engine used for on-disk temporary tables.
也就是说这里临时表的限制是16M
,max_heap_table_size
大小也受tmp_table_size
大小的限制。
所以我们这里调整为32MB
,然后执行原始的SQL
set tmp_table_size=33554432; set max_heap_table_size=33554432;
# Query_time: 5.910553 Lock_time: 0.000210 Rows_sent: 10 Rows_examined: 1337315 SET timestamp=1552803869; select aid,sum(pv) as num from article_rank where day>=20181220 and day<=20181224 group by aid order by num desc limit 10;
方案3 使用 SQL_BIG_RESULT 优化
告诉优化器,查询结果比较多,临时表直接走磁盘存储。
# Query_time: 6.144315 Lock_time: 0.000183 Rows_sent: 10 Rows_examined: 2122417 SET timestamp=1552802804; select SQL_BIG_RESULT aid,sum(pv) as num from article_rank where day>=20181220 and day<=20181224 group by aid order by num desc limit 10;
扫描行数是 2
x满足条件的总行数(785102)
+group by 之后的总行数(552203)
+limit 的值
。
顺便值得一提的是: 当我把数据量翻倍之后,使用该方式,查询时间基本没变。因为扫描的行数还是不变的。实际测试耗时6.197484
总结
方案1优化效果不稳定,当总表数据量与查询范围的总数相同时,且不超出内存临时表大小限制时,性能达到最佳。当查询数据量占据总表数据量越大,优化效果越不明显;
方案2需要调整临时表内存的大小,可行;不过当数据库超过32MB
时,如果使用该方式,还需要继续提升临时表大小;
方案3直接声明使用磁盘来放临时表,虽然扫描行数多了一次符合条件的总行数的扫描。但是整体响应时间比方案2就慢了0.1
秒。因为我们这里数据量比较,我觉得这个时间差还能接受。
所以最后对比,选择方案3比较合适。
问题与困惑
# SQL1 select aid,sum(pv) as num from article_rank where day>=20181220 and day<=20181224 group by aid order by num desc limit 10; # SQL2 select aid,sum(pv) as num from article_rank force index(idx_aid_day_pv) where day>=20181220 and day<=20181224 group by aid order by num desc limit 10;
- SQL1 执行过程中,使用的是全字段排序最后不需要回表为什么总扫描行数还要加上10才对得上?
- SQL1 与 SQL2
group by
之后得到的行数都是552203
,为什么会出现 SQL1 内存不够,里面还有哪些细节呢? - trace 信息里的
creating_tmp_table.tmp_table_info.row_limit_estimate
都是838860
;计算由来是临时表的内存限制大小16MB
,而一行需要占的空间是20字节,那么最多只能容纳floor(16777216/20) = 838860
行,而实际我们需要放入临时表的行数是785102
。为什么呢? - SQL1 使用
SQL_BIG_RESULT
优化之后,原始表需要扫描的行数会乘以2,背后逻辑是什么呢?为什么仅仅是不再尝试往内存临时表里写入这一步会相差10多倍的性能? - 通过源码看到 trace 信息里面很多扫描行数都不是实际的行数,既然是实际执行,为什么 trace 信息里不输出真实的扫描行数和容量等呢,比如
filesort_priority_queue_optimization.rows_estimate
在SQL1中的扫描行数我通过gdb看到计算规则如附录图 1 - 有没有工具能够统计 SQL 执行过程中的 I/O 次数?
附录