洛谷P1962 斐波那契数列
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列:
• f(1) = 1
• f(2) = 1
• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)
题目描述
请你求出 f(n) mod 1000000007 的值。
输入输出格式
输入格式:
·第 1 行:一个整数 n
输出格式:
第 1 行: f(n) mod 1000000007 的值
输入输出样例
输入样例#1:
5
输出样例#1:
5
输入样例#2:
10
输出样例#2:
55
说明
对于 60% 的数据: n ≤ 92
对于 100% 的数据: n在long long(INT64)范围内。
感觉自己学的一直是假的矩阵快速幂。。。
辅助矩阵为
$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$
#include<cstdio>
#include<cstring>
#define int long long 
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++)
using namespace std;
const int MAXN=101;
const int mod=1e9+7;
char buf[1<<20],*p1=buf,*p2=buf;
inline int read()
{
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
int n,k;
struct Matrix
{
    int m[MAXN][MAXN];
    Matrix operator * (const Matrix a)const
    {
        Matrix ans={};
        for(int k=1;k<=n;k++)
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++)
                    ans.m[i][j]=(ans.m[i][j]+(m[i][k]*a.m[k][j])%mod)%mod;
        return ans;
    }        
    Matrix pow(int p)
    {
        Matrix ans,a=(*this);
        for(int i=1;i<=n;i++) ans.m[i][i]=1;
        while(p)
        {
            if(p&1) ans=ans*a;
            a=a*a;
        //    a.print();
            p>>=1;
        }
        return ans;
    }
    void print()
    {
        for(int i=1;i<=n;i++,puts(""))
            for(int j=1;j<=n;j++)
                printf("%d ",m[i][j]);
        printf("*******************\n");
    }
};
main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #endif
    k=read();n=2;
    Matrix temp,ans;
    temp.m[1][1]=0;temp.m[1][2]=1;
    temp.m[2][1]=1;temp.m[2][2]=1;
    ans.m[1][1]=0;ans.m[1][2]=1;
    ans.m[2][1]=0;ans.m[2][2]=1;
    temp=temp.pow(k);
    ans=ans*temp;
    printf("%d",ans.m[1][1]);
    return 0;
} 相关推荐
  bizercsdn    2020-03-27  
   JakobHu    2020-01-03  
   llwang0    2019-12-28  
   GhostLWB    2019-12-14  
   qitong    2019-11-04  
   风吹夏天    2019-11-03  
   seekerhit    2019-10-20  
   Broadview    2019-06-27  
   风和日丽    2019-06-27  
   taiyangshenniao    2019-06-27  
 动态规划有时被称为递归的相反的技术。动态规划方案通常使用一个数组来建立一张表,用于存放被分解成众多子问题的解。当算法执行完毕,最终的解法将会在这个表中找到。今天我们先从我们最熟的斐波那契数列数列开始。
  WindChaser    2019-06-21  
   hujun0    2013-03-19  
   HappyRocking    2019-05-16  
   HMHYY    2019-03-19  
   HeyShHeyou    2018-01-16  
   tingke    2015-08-09  
   天恒永恒    2017-01-12