python学习记录五

map

我们可以先看map,map函数接收两个参数,一个是函数,一个是Iterable,map将传入函数依次作用到序列的每个元素,并把结果作为新的Iterator返回

python学习记录五

 利用python实现

>>> def f(x):
...     return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]

map()传入的第一个参数是f,即函数对象本身。由于结果r是一个IteratorIterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。

所以,map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串:

>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
[‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘, ‘7‘, ‘8‘, ‘9‘]

reduce()用法 reduce把一个函数作用在一个序列[x1,x2,x3....]上,这个函数必须接受两个参数,reduce把结果继续和序列的下一个元素做类及计算,其效果就是:

 

reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)>>> from functools import reduce
>>> def add(x, y):
...     return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25
>>> from functools import reduce
>>> def fn(x, y):
...     return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579

filter

filter()也可以接收一个函数和一个序列 和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

def is_odd(n):   return n % 2 == 1 list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15])) # 结果: [1, 5, 9, 15]

把一个序列中的空字符串删掉,可以这么写:

def not_empty(s):
    return s and s.strip()

list(filter(not_empty, [‘A‘, ‘‘, ‘B‘, None, ‘C‘, ‘  ‘]))
# 结果: [‘A‘, ‘B‘, ‘C‘]

可见用filter()这个高阶函数,关键在于正确实现一个“筛选”函数。

注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。


sorted()

>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
>>> sorted([‘bob‘, ‘about‘, ‘Zoo‘, ‘Credit‘], key=str.lower)
[‘about‘, ‘bob‘, ‘Credit‘, ‘Zoo‘]
>>> sorted([‘bob‘, ‘about‘, ‘Zoo‘, ‘Credit‘], key=str.lower, reverse=True)
[‘Zoo‘, ‘Credit‘, ‘bob‘, ‘about‘]
 

相关推荐