爬取网易云音乐评论并使用词云展示
最近听到一首很喜欢的歌,许薇的《我以为》,评论也很有趣,遂有想爬取该歌曲下的所有评论并用词云工具展示。
我们使用chrome开发者工具,发现歌曲的评论都隐藏在以 R_SO_4 开头的 XHR 文件中
接下来思路就很明确,拿到该文件,解析该文件的json,拿到全部评论。
我们可以看到该文件有两个用JS的加密参数 params 和 encSecKey ,关于这两个加密参数,参考了知乎用户的解答:https://www.zhihu.com/question/36081767。
步骤:
1.导入必要的模块:
from Crypto.Cipher import AES from wordcloud import WordCloud #需加入下面两句话,不然会报错:matplotlib: RuntimeError: Python is not installed as a framework import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import base64 import requests import json import codecs import time import jieba
注:本人使用MacOS,在该环境下会报错,加入:
import matplotlib matplotlib.use('TkAgg')
2.写入请求头:
headers = { 'Host':'music.163.com', 'Origin':'https://music.163.com', 'Referer':'https://music.163.com/song?id=28793052', 'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.181 Safari/537.36' }
3.解析 params 和 encSecKey 这两个参数:
# 第一个参数 # first_param = '{rid:"", offset:"0", total:"true", limit:"20", csrf_token:""}' # 第二个参数 second_param = "010001" # 第三个参数 third_param = "00e0b509f6259df8642dbc35662901477df22677ec152b5ff68ace615bb7b725152b3ab17a876aea8a5aa76d2e417629ec4ee341f56135fccf695280104e0312ecbda92557c93870114af6c9d05c4f7f0c3685b7a46bee255932575cce10b424d813cfe4875d3e82047b97ddef52741d546b8e289dc6935b3ece0462db0a22b8e7" # 第四个参数 forth_param = "0CoJUm6Qyw8W8jud" # 获取参数 def get_params(page): # page为传入页数 iv = "0102030405060708" first_key = forth_param second_key = 16 * 'F' if(page == 1): # 如果为第一页 first_param = '{rid:"", offset:"0", total:"true", limit:"20", csrf_token:""}' h_encText = AES_encrypt(first_param, first_key, iv) else: offset = str((page-1)*20) first_param = '{rid:"", offset:"%s", total:"%s", limit:"20", csrf_token:""}' %(offset,'false') h_encText = AES_encrypt(first_param, first_key, iv) h_encText = AES_encrypt(h_encText, second_key, iv) return h_encText # 获取 encSecKey def get_encSecKey(): encSecKey = "257348aecb5e556c066de214e531faadd1c55d814f9be95fd06d6bff9f4c7a41f831f6394d5a3fd2e3881736d94a02ca919d952872e7d0a50ebfa1769a7a62d512f5f1ca21aec60bc3819a9c3ffca5eca9a0dba6d6f7249b06f5965ecfff3695b54e1c28f3f624750ed39e7de08fc8493242e26dbc4484a01c76f739e135637c" return encSecKey # 解密过程 def AES_encrypt(text, key, iv): pad = 16 - len(text) % 16 text = text + pad * chr(pad) encryptor = AES.new(key, AES.MODE_CBC, iv) encrypt_text = encryptor.encrypt(text) encrypt_text = base64.b64encode(encrypt_text) encrypt_text = str(encrypt_text, encoding="utf-8") #注意一定要加上这一句,没有这一句则出现错误 return encrypt_text
4.获取 json 数据并抓取评论:
# 获得评论json数据 def get_json(url, params, encSecKey): data = { "params": params, "encSecKey": encSecKey } response = requests.post(url, headers=headers, data=data) return response.content # 抓取某一首歌的前100页评论 def get_all_comments(url,page): all_comments_list = [] # 存放所有评论 for i in range(page): # 逐页抓取 params = get_params(i+1) encSecKey = get_encSecKey() json_text = get_json(url,params,encSecKey) json_dict = json.loads(json_text) for item in json_dict['comments']: comment = item['content'] # 评论内容 comment_info = str(comment) all_comments_list.append(comment_info) print('第%d页抓取完毕!' % (i+1)) #time.sleep(random.choice(range(1,3))) #爬取过快的话,设置休眠时间,跑慢点,减轻服务器负担 return all_comments_list
5.使用结巴分词过滤停用词并用 wordcloud 生成词云:
#生成词云 def wordcloud(all_comments): # 对句子进行分词,加载停用词 # 打开和保存文件时记得加encoding='utf-8'编码,不然会报错。 def seg_sentence(sentence): sentence_seged = jieba.cut(sentence.strip(), cut_all=False) # 精确模式 stopwords = [line.strip() for line in open('stopwords.txt', 'r', encoding='utf-8').readlines()] # 这里加载停用词的路径 outstr = '' for word in sentence_seged: if word not in stopwords: if word != '\t': outstr += word outstr += " " return outstr for line in all_comments: line_seg = seg_sentence(line) # 这里的返回值是字符串 with open('outputs.txt', 'a', encoding='utf-8') as f: f.write(line_seg + '\n') data = open('outputs.txt', 'r', encoding='utf-8').read() my_wordcloud = WordCloud( background_color='white', #设置背景颜色 max_words=200, #设置最大实现的字数 font_path=r'SimHei.ttf', #设置字体格式,如不设置显示不了中文 ).generate(data) plt.figure() plt.imshow(my_wordcloud) plt.axis('off') plt.show() # 展示词云
注意编码格式为 'utf-8' 。
6.定义主函数并设置函数出口:
def main(): start_time = time.time() # 开始时间 url = "https://music.163.com/weapi/v1/resource/comments/R_SO_4_28793052?csrf_token=" # 替换为你想下载的歌曲R_SO的链接 all_comments = get_all_comments(url, page=2000) # 需要爬取的页面数 wordcloud(all_comments) end_time = time.time() # 结束时间 print('程序耗时%f秒.' % (end_time - start_time)) if __name__ == '__main__': main()
运行过程如下(个人爬取了《我以为》的前2000页的评论):
生成词云:
相关推荐
mingrixing 2019-11-05
AdamShan 2020-10-26
NoobZhou 2020-08-03
xingguanghai 2020-07-25
baike 2020-06-14
yawei 2020-05-30
hilary0 2020-05-15
heqiang0 2020-04-22
一个客户要求给网站添加一个背景音乐,我用的是html5添加网页背景音乐的代码,在此记录一下以后有用。html5方法二:<videocontrols=""autoplay=""name="media&q
玫瑰小妖 2020-01-24
pengkunstone 2019-12-26
tencentopen 2019-11-21
大腕绿茶 2019-11-07
zzxwbs 2011-08-12
Nmillion 2019-11-04
lypgcs 2019-09-06
Reiki 2019-03-28