8 种常被忽视的 SQL 错误用法

8 种常被忽视的 SQL 错误用法

sql语句的执行顺序:

FROM

< left_table > ON < join_condition > < join_type >

JOIN < right_table >

WHERE

< where_condition >

GROUP BY

< group_by_list >

HAVING

< having_condition > SELECT DISTINCT

< select_list >

ORDER BY

< order_by_condition >

LIMIT < limit_number >

一、LIMIT 语句

分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。

SELECT

*

FROM

operation

WHERE

type = 'SQLStats'

AND NAME = 'SlowLog'

ORDER BY

create_time

LIMIT 1000,

10;

好吧,可能90%以上的 DBA 解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。

在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下:

SELECT

*

FROM

operation

WHERE

type = 'SQLStats'

AND NAME = 'SlowLog'

AND create_time > '2017-03-16 14:00:00'

ORDER BY

create_time

LIMIT 10;

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。

二、隐式转换

SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:

mysql > EXPLAIN EXTENDED SELECT

* >

FROM

my_balance b >

WHERE

b.bpn = 14000000123 >

AND b.isverified IS NULL;

mysql > SHOW WARNINGS;

| Warning | 1739 | Cannot USE ref access ON INDEX 'bpn' due TO type

OR COLLATION conversion ON field 'bpn'

其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。

三、关联更新、删除

虽然 MySQL5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。

比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。

UPDATE operation o

SET STATUS = 'applying'

WHERE

o.id IN (

SELECT

id

FROM

(

SELECT

o.id,

o. STATUS

FROM

operation o

WHERE

o. GROUP = 123

AND o. STATUS NOT IN ('done')

ORDER BY

o.parent,

o.id

LIMIT 1

) t

);

执行计划:

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

| 1 | PRIMARY | o | index | | PRIMARY | 8 | | 24 | Using where; Using temporary |

| 2 | DEPENDENT SUBQUERY | | | | | | | | Impossible WHERE noticed after reading const tables |

| 3 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒。

UPDATE operation o

JOIN (

SELECT

o.id,

o. STATUS

FROM

operation o

WHERE

o. GROUP = 123

AND o. STATUS NOT IN ('done')

ORDER BY

o.parent,

o.id

LIMIT 1

) t ON o.id = t.id

SET STATUS = 'applying'

执行计划简化为:

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

| 1 | PRIMARY | | | | | | | | Impossible WHERE noticed after reading const tables |

| 2 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

四、混合排序

MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

SELECT

*

FROM

my_order o

INNER JOIN my_appraise a ON a.orderid = o.id

ORDER BY

a.is_reply ASC,

a.appraise_time DESC

LIMIT 0,

20

执行计划显示为全表扫描:

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+

| 1 | SIMPLE | a | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort |

| 1 | SIMPLE | o | eq_ref | PRIMARY | PRIMARY | 122 | a.orderid | 1 | NULL |

+----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+

由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

SELECT

*

FROM

(

(

SELECT

*

FROM

my_order o

INNER JOIN my_appraise a ON a.orderid = o.id

AND is_reply = 0

ORDER BY

appraise_time DESC

LIMIT 0,

20

)

UNION ALL

(

SELECT

*

FROM

my_order o

INNER JOIN my_appraise a ON a.orderid = o.id

AND is_reply = 1

ORDER BY

appraise_time DESC

LIMIT 0,

20

)

) t

ORDER BY

is_reply ASC,

appraisetime DESC

LIMIT 20;

五、EXISTS语句

MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句:

SELECT

*

FROM

my_neighbor n

LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id

AND sra.user_id = 'xxx'

WHERE

n.topic_status < 4

AND EXISTS (

SELECT

1

FROM

message_info m

WHERE

n.id = m.neighbor_id

AND m.inuser = 'xxx'

)

AND n.topic_type <> 5

执行计划为:

+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

| 1 | PRIMARY | n | ALL | | NULL | NULL | NULL | 1086041 | Using where |

| 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where |

| 2 | DEPENDENT SUBQUERY | m | ref | | idx_message_info | 122 | const | 1 | Using index condition; Using where |

+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

SELECT

*

FROM

my_neighbor n

INNER JOIN message_info m ON n.id = m.neighbor_id

AND m.inuser = 'xxx'

LEFT JOIN my_neighbor_apply sra ON n.id = sra.neighbor_id

AND sra.user_id = 'xxx'

WHERE

n.topic_status < 4

AND n.topic_type <> 5

新的执行计划:

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

| 1 | SIMPLE | m | ref | | idx_message_info | 122 | const | 1 | Using index condition |

| 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where |

| 1 | SIMPLE | sra | ref | | idx_user_id | 123 | const | 1 | Using where |

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

8 种常被忽视的 SQL 错误用法

六、条件下推

外部查询条件不能够下推到复杂的视图或子查询的情况有:

  • 聚合子查询;
  • 含有 LIMIT 的子查询;
  • UNION 或 UNION ALL 子查询;
  • 输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

SELECT

*

FROM

(

SELECT

target,

Count(*)

FROM

operation

GROUP BY

target

) t

WHERE

target = 'rm-xxxx'

+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

| 1 | PRIMARY | <derived2> | ref | <auto_key0> | <auto_key0> | 514 | const | 2 | Using where |

| 2 | DERIVED | operation | index | idx_4 | idx_4 | 519 | NULL | 20 | Using index |

+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

确定从语义上查询条件可以直接下推后,重写如下:

SELECT

target,

Count(*)

FROM

operation

WHERE

target = 'rm-xxxx'

GROUP BY

target

执行计划变为:

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

七、提前缩小范围

先上初始 SQL 语句:

SELECT

*

FROM

my_order o

LEFT JOIN my_userinfo u ON o.uid = u.uid

LEFT JOIN my_productinfo p ON o.pid = p.pid

WHERE

(o.display = 0)

AND (o.ostaus = 1)

ORDER BY

o.selltime DESC

LIMIT 0,

15

该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

| 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort |

| 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |

| 1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。

SELECT

*

FROM

(

SELECT

*

FROM

my_order o

WHERE

(o.display = 0)

AND (o.ostaus = 1)

ORDER BY

o.selltime DESC

LIMIT 0,

15

) o

LEFT JOIN my_userinfo u ON o.uid = u.uid

LEFT JOIN my_productinfo p ON o.pid = p.pid

ORDER BY

o.selltime DESC

LIMIT 0,

15

再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 15 | Using temporary; Using filesort |

| 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |

| 1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |

| 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where |

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

八、中间结果集下推

再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

SELECT

a.*, c.allocated

FROM

(

SELECT

resourceid

FROM

my_distribute d

WHERE

isdelete = 0

AND cusmanagercode = '1234567'

ORDER BY

salecode

LIMIT 20

) a

LEFT JOIN (

SELECT

resourcesid, sum(ifnull(allocation, 0) * 12345) allocated

FROM

my_resources

GROUP BY

resourcesid

) c ON a.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

SELECT

a.*, c.allocated

FROM

(

SELECT

resourceid

FROM

my_distribute d

WHERE

isdelete = 0

AND cusmanagercode = '1234567'

ORDER BY

salecode

LIMIT 20

) a

LEFT JOIN (

SELECT

resourcesid, sum(ifnull(allocation, 0) * 12345) allocated

FROM

my_resources r,

(

SELECT

resourceid

FROM

my_distribute d

WHERE

isdelete = 0

AND cusmanagercode = '1234567'

ORDER BY

salecode

LIMIT 20

) a

WHERE

r.resourcesid = a.resourcesid

GROUP BY

resourcesid

) c ON a.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写:

WITH a AS (

SELECT

resourceid

FROM

my_distribute d

WHERE

isdelete = 0

AND cusmanagercode = '1234567'

ORDER BY

salecode

LIMIT 20

) SELECT

a.*, c.allocated

FROM

a

LEFT JOIN (

SELECT

resourcesid, sum(ifnull(allocation, 0) * 12345) allocated

FROM

my_resources r,

a

WHERE

r.resourcesid = a.resourcesid

GROUP BY

resourcesid

) c ON a.resourceid = c.resourcesid

总结

数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。

上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。

程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。

编写复杂SQL语句要养成使用 WITH 语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 。

8 种常被忽视的 SQL 错误用法

相关推荐