Elasticsearch之高亮查询,聚合查询,

Elasticsearch之高亮查询

一 前言

如果返回的结果集中很多符合条件的结果,那怎么能一眼就能看到我们想要的那个结果呢?比如下面网站所示的那样,我们搜索elasticsearch,在结果集中,将所有elasticsearch高亮显示?

Elasticsearch之高亮查询,聚合查询,

如上图我们搜索百度一样。我们该怎么做呢?

二 准备数据

PUT lqz/doc/4
{
  "name":"石头",
  "age":29,
  "from":"gu",
  "desc":"粗中有细,狐假虎威",
  "tags":["粗", "大","猛"]
}

三 默认高亮显示

我们来查询:

GET lqz/doc/_search
{
  "query": {
    "match": {
      "name": "石头"
    }
  },
  "highlight": {
    "fields": {
      "name": {}
    }
  }
}

#我们使用highlight属性来实现结果高亮显示,需要的字段名称添加到fields内即可,elasticsearch会自动帮我们实现高亮。
结果如下:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 1.5098256,
    "hits" : [
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "4",
        "_score" : 1.5098256,
        "_source" : {
          "name" : "石头",
          "age" : 29,
          "from" : "gu",
          "desc" : "粗中有细,狐假虎威",
          "tags" : [
            "粗",
            "大",
            "猛"
          ]
        },
        "highlight" : {
          "name" : [
            "<em>石</em><em>头</em>"
          ]
        }
      }
    ]
  }
}

查询结果

上例中,elasticsearch会自动将检索结果用标签包裹起来,用于在页面中渲染。

四 自定义高亮显示

GET lqz/chengyuan/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "highlight": {
    "pre_tags": "<b class=‘key‘ style=‘color:red‘>",
    "post_tags": "</b>",
    "fields": {
      "from": {}
    }
  }
}
上例中,在highlight中,pre_tags用来实现我们的自定义标签的前半部分,在这里,我们也可以为自定义的标签添加属性和样式。post_tags实现标签的后半部分,组成一个完整的标签。至于标签中的内容,则还是交给fields来完成。
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.5753642,
    "hits" : [
      {
        "_index" : "lqz",
        "_type" : "chengyuan",
        "_id" : "1",
        "_score" : 0.5753642,
        "_source" : {
          "name" : "老二",
          "age" : 30,
          "sex" : "male",
          "birth" : "1070-10-11",
          "from" : "gu",
          "desc" : "皮肤黑,武器长,性格直",
          "tags" : [
            "黑",
            "长",
            "直"
          ]
        },
        "highlight" : {
          "name" : [
            "<b class=‘key‘ style=‘color:red‘>老</b><b class=‘key‘ style=‘color:red‘>二</b>"
          ]
        }
      }
    ]
  }
}

查询结果

需要注意的是:自定义标签中属性或样式中的逗号一律用英文状态的单引号表示,应该与外部elasticsearch语法的双引号区分开

前后端分离,你怎么处理?把<b class=‘key‘ style=‘color:red‘>串直接以json格式返回,前端自行渲染

Elasticsearch之聚合查询

  • avg

  • max

  • min

  • sum

avg

# 查询`from`是`gu`的人的平均年龄。
# select max(age) as my_avg from user;

GET lqz/doc/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "aggs": {
    "my_avg": {
      "avg": {
        "field": "age"
      }
    }
  },
  "_source": ["name", "age"]
}

上例中,首先匹配查询fromgu的数据。在此基础上做查询平均值的操作,这里就用到了聚合函数,其语法被封装在aggs中,而my_avg则是为查询结果起个别名,封装了计算出的平均值。那么,要以什么属性作为条件呢?是age年龄,查年龄的什么呢?是avg,查平均年龄。

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 3,
    "max_score" : 0.6931472,
    "hits" : [
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "4",
        "_score" : 0.6931472,
        "_source" : {
          "name" : "石头",
          "age" : 29
        }
      },
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "顾老二",
          "age" : 30
        }
      },
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "龙套偏房",
          "age" : 22
        }
      }
    ]
  },
  "aggregations" : {
    "my_avg" : {
      "value" : 27.0
    }
  }
}

查询结果

上例中,在查询结果的最后是平均值信息,可以看到是27岁。

虽然我们已经使用_source对字段做了过滤,但是还不够。我不想看都有哪些数据,只想看平均值怎么办?别忘了size!

GET lqz/doc/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "aggs": {
    "my_avg": {
      "avg": {
        "field": "age"
      }
    }
  },
  "size": 0, 
  "_source": ["name", "age"]
}

上例中,只需要在原来的查询基础上,增加一个size就可以了,输出几条结果,我们写上0,就是输出0条查询结果。

{
  "took" : 8,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 3,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "my_avg" : {
      "value" : 27.0
    }
  }
}

查询结果

max

GET lqz/doc/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "aggs": {
    "my_max": {
      "max": {
        "field": "age"
      }
    }
  },
  "size": 0
}

上例中,只需要在查询条件中将avg替换成max即可。

min

GET lqz/doc/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "aggs": {
    "my_min": {
      "min": {
        "field": "age"
      }
    }
  },
  "size": 0
}

sum

# 求年龄总和GET lqz/doc/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "aggs": {
    "my_sum": {
      "sum": {
        "field": "age"
      }
    }
  },
  "size": 0
}

分组查询

现在我想要查询所有人的年龄段,并且按照15~20,20~25,25~30分组,并且算出每组的平均年龄。

GET lqz/doc/_search
{
  "size": 0, 
  "query": {
    "match_all": {}
  },
  "aggs": {
    "age_group": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "from": 15,
            "to": 20
          },
          {
            "from": 20,
            "to": 25
          },
          {
            "from": 25,
            "to": 30
          }
        ]
      },
      "aggs": {
        "my_avg": {
          "avg": {
            "field": "age"
          }
        }
      }
    }
  }
}
{
 "took" : 1,
 "timed_out" : false,
 "_shards" : {
   "total" : 5,
   "successful" : 5,
   "skipped" : 0,
   "failed" : 0
 },
 "hits" : {
   "total" : 5,
   "max_score" : 0.0,
   "hits" : [ ]
 },
 "aggregations" : {
   "age_group" : {
     "buckets" : [
       {
         "key" : "15.0-20.0",
         "from" : 15.0,
         "to" : 20.0,
         "doc_count" : 1,
         "my_avg" : {
           "value" : 18.0
         }
       },
       {
         "key" : "20.0-25.0",
         "from" : 20.0,
         "to" : 25.0,
         "doc_count" : 1,
         "my_avg" : {
           "value" : 22.0
         }
       },
       {
         "key" : "25.0-30.0",
         "from" : 25.0,
         "to" : 30.0,
         "doc_count" : 2,
         "my_avg" : {
           "value" : 27.0
         }
       }
     ]
   }
 }
}

查询结果

上例中,在aggs的自定义别名age_group中,使用range来做分组,field是以age为分组,分组使用ranges来做,fromto是范围,我们根据需求做出三组。在分组下面,我们使用aggsage做平均数处理,这样就可以了。返回的结果中可以看到,已经拿到了三个分组。doc_count为该组内有几条数据,此次共分为三组,查询出4条内容。还有一条数据的age属性值是30,不在分组的范围内!

注意:聚合函数的使用,一定是先查出结果,然后对结果使用聚合函数做处理

相关推荐