Linux select/poll/epoll 原理(二)select 实现
阅读源码时看到一个结构体的定义不知道在哪时,可以通过这个网站来查找,非常方便。
__user 是一个宏定义,表示用户空间的,内核不能直接使用,需要使用函数 copy_from_user/copy_to_user 进行处理。
0. 进程打开的文件
进程的表示:
// 源码位置:include/linux/sched.h
struct task_struct {
// ....省略其他属性
/* 文件系统信息: */
struct fs_struct *fs;
/* 打开的文件信息: */
struct files_struct *files;
// ....省略其他属性
}
进程维护打开的文件的数据结构:
// 源码位置:include/linux/fdtable.h
struct files_struct {
/*
* read mostly part
*/
atomic_t count;
bool resize_in_progress;
wait_queue_head_t resize_wait;
struct fdtable __rcu *fdt;
struct fdtable fdtab;
/*
* written part on a separate cache line in SMP
*/
spinlock_t file_lock ____cacheline_aligned_in_smp;
unsigned int next_fd;
unsigned long close_on_exec_init[1];
unsigned long open_fds_init[1];
unsigned long full_fds_bits_init[1];
struct file __rcu * fd_array[NR_OPEN_DEFAULT];
};
struct fdtable {
// 进程能打开的最大文件数
unsigned int max_fds;
struct file __rcu **fd; /* current fd array */
unsigned long *close_on_exec;
// 当前打开的一组文件
unsigned long *open_fds;
unsigned long *full_fds_bits;
struct rcu_head rcu;
};
static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt)
{
return test_bit(fd, fdt->open_fds);
}
小结:进程打开的文件维护在位图 fdtable.open_fds 里,对应的比特位为 1 表示文件打开,为 0 是关闭。
select 里传递事件也借鉴了这种思想,通过位图来传递,FD 对应的比特位为 1 表示对事件感兴趣或有事件发生。
1. 基本数据结构
// include/uapi/linux/posix_types.h
#define __FD_SETSIZE 1024
typedef struct {
unsigned long fds_bits[__FD_SETSIZE / (8 * sizeof(long))];
} __kernel_fd_set;
// 源码位置: include/linux/types.h
typedef __kernel_fd_set fd_set;
// 源码位置: fs/select.c
// 用于传递 select 的输入事件、输出结果,是 fd_set 的扩展版。
typedef struct {
unsigned long *in, *out, *ex;
unsigned long *res_in, *res_out, *res_ex;
} fd_set_bits;
小结:从上述定义可以看到,fd_set 就是一个位图,限制了 select 操作就多可以 poll 1024 个文件,如果要支持 poll 更多的文件,需要修改源码、重新编译。
fd_set_bits 里的6个变量是6个指针,指向不同的位图起始地址,见下文里的注释说明。
2. select 主逻辑
select 调用利用 fd_set 这个位图来传递输入的要监听的事件和输出结果。
// 源码位置: fs/select.c
// select 系统调用原型
SYSCALL_DEFINE5(select, int, n, fd_set __user *, inp, fd_set __user *, outp,
fd_set __user *, exp, struct timeval __user *, tvp)
{
struct timespec64 end_time, *to = NULL;
struct timeval tv;
int ret;
if (tvp) {
if (copy_from_user(&tv, tvp, sizeof(tv)))
return -EFAULT;
to = &end_time;
if (poll_select_set_timeout(to,
tv.tv_sec + (tv.tv_usec / USEC_PER_SEC),
(tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC))
return -EINVAL;
}
ret = core_sys_select(n, inp, outp, exp, to);
ret = poll_select_copy_remaining(&end_time, tvp, 1, ret);
return ret;
}
int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, struct timespec64 *end_time)
{
fd_set_bits fds;
void *bits;
int ret, max_fds;
size_t size, alloc_size;
struct fdtable *fdt;
/* Allocate small arguments on the stack to save memory and be faster */
// 在栈上分配的小段参数,用于节省内存和提升速度
// SELECT_STACK_ALLOC=256
long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
ret = -EINVAL;
if (n < 0)
goto out_nofds;
/* max_fds can increase, so grab it once to avoid race */
rcu_read_lock();
fdt = files_fdtable(current->files);
max_fds = fdt->max_fds;
rcu_read_unlock();
// poll 的最大 FD 不能超过 进程打开的最大FD
if (n > max_fds)
n = max_fds;
// 每个文件有3种输入、3种输出,因此每个文件需要6个位图来表示事件
/*
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
* since we used fdset we need to allocate memory in units of
* long-words.
*/
// n 个文件需要的字节数,也是每份位图的大小
size = FDS_BYTES(n);
bits = stack_fds;
// sizeof(stack_fds) / 6 是把栈上分配的内存块划分为 6 份做位图
if (size > sizeof(stack_fds) / 6 ) {
/* Not enough space in on-stack array; must use kmalloc */
// 栈上分配的空间不够,要使用 kmalloc
ret = -ENOMEM;
if (size > (SIZE_MAX / 6))
goto out_nofds;
alloc_size = 6 * size;
bits = kvmalloc(alloc_size, GFP_KERNEL);
if (!bits)
goto out_nofds;
}
// 把 fds 里的指针指向不同位图的起始地址
fds.in = bits;
fds.out = bits + size;
fds.ex = bits + 2*size;
fds.res_in = bits + 3*size;
fds.res_out = bits + 4*size;
fds.res_ex = bits + 5*size;
// 把用户空间的事件拷贝到内核空间
if ((ret = get_fd_set(n, inp, fds.in)) ||
(ret = get_fd_set(n, outp, fds.out)) ||
(ret = get_fd_set(n, exp, fds.ex)))
goto out;
// 清零输出结果
zero_fd_set(n, fds.res_in);
zero_fd_set(n, fds.res_out);
zero_fd_set(n, fds.res_ex);
ret = do_select(n, &fds, end_time);
if (ret < 0)
goto out;
if (!ret) {
ret = -ERESTARTNOHAND;
if (signal_pending(current))
goto out;
ret = 0;
}
// 通过 __copy_to_user 拷贝结果到用户空间
if (set_fd_set(n, inp, fds.res_in) ||
set_fd_set(n, outp, fds.res_out) ||
set_fd_set(n, exp, fds.res_ex))
ret = -EFAULT;
out:
if (bits != stack_fds)
kvfree(bits);
out_nofds:
return ret;
}
static int do_select(int n, fd_set_bits *fds, struct timespec64 *end_time)
{
ktime_t expire, *to = NULL;
// 构建一个等待队列,该队列维护着对所有添加到文件的等待队列的节点的指针
struct poll_wqueues table;
// 等待节点的数据原型,主要用于传递参数
poll_table *wait;
int retval, i, timed_out = 0;
u64 slack = 0;
unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0;
unsigned long busy_start = 0;
rcu_read_lock();
retval = max_select_fd(n, fds);
rcu_read_unlock();
if (retval < 0)
return retval;
n = retval;
// 设置 wait._qproc = __pollwait
poll_initwait(&table);
wait = &table.pt;
if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
wait->_qproc = NULL;
timed_out = 1;
}
if (end_time && !timed_out)
slack = select_estimate_accuracy(end_time);
retval = 0;
for (;;) {
unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
bool can_busy_loop = false;
inp = fds->in; outp = fds->out; exp = fds->ex;
rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
// 分批轮询
for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
unsigned long in, out, ex, all_bits, bit = 1, mask, j;
unsigned long res_in = 0, res_out = 0, res_ex = 0;
in = *inp++; out = *outp++; ex = *exp++;
all_bits = in | out | ex; //
if (all_bits == 0) {
// 没有敢兴趣的事件,跳过 BITS_PER_LONG 个文件
i += BITS_PER_LONG;
continue;
}
// 批次内逐个轮询
for (j = 0; j < BITS_PER_LONG; ++j, ++i, bit <<= 1) { // bit 左移是为了给正确的文件设置事件结果
struct fd f;
if (i >= n)
break;
if (!(bit & all_bits))
continue;
f = fdget(i);
if (f.file) {
// 找到了文件
const struct file_operations *f_op;
f_op = f.file->f_op;
mask = DEFAULT_POLLMASK;
if (f_op->poll) {
wait_key_set(wait, in, out,
bit, busy_flag);
// 调用文件的 poll 函数,最终会调用到 __pollwait 函数
// __pollwait
mask = (*f_op->poll)(f.file, wait);
}
fdput(f);
// 下面的 if 语句块内,是已经检测到事件发生了,进程不需要进行等待和唤醒
// 把 _qproc 设置为 NULL 是为了避免往后续 poll 未就绪的文件时被加入等待队列
// 这样可以避免无效的唤醒
if ((mask & POLLIN_SET) && (in & bit)) {
res_in |= bit;
retval++;
wait->_qproc = NULL;
}
if ((mask & POLLOUT_SET) && (out & bit)) {
res_out |= bit;
retval++;
wait->_qproc = NULL;
}
if ((mask & POLLEX_SET) && (ex & bit)) {
res_ex |= bit;
retval++;
wait->_qproc = NULL;
}
//
/* got something, stop busy polling */
if (retval) {
can_busy_loop = false;
busy_flag = 0;
/*
* only remember a returned
* POLL_BUSY_LOOP if we asked for it
*/
} else if (busy_flag & mask)
can_busy_loop = true;
}
}
// 小批次轮询完,把结果记录下来
if (res_in)
*rinp = res_in;
if (res_out)
*routp = res_out;
if (res_ex)
*rexp = res_ex;
// 进入睡眠,等待超时或唤醒
cond_resched();
}
// 所有文件都轮询了一遍,要加入文件等待队列的都已经加了,避免下次轮询重复添加
wait->_qproc = NULL;
// 有事件、或超时、或有信号要处理
if (retval || timed_out || signal_pending(current))
break;
if (table.error) {
retval = table.error;
break;
}
/* only if found POLL_BUSY_LOOP sockets && not out of time */
if (can_busy_loop && !need_resched()) {
if (!busy_start) {
busy_start = busy_loop_current_time();
continue;
}
if (!busy_loop_timeout(busy_start))
continue;
}
busy_flag = 0;
/*
* If this is the first loop and we have a timeout
* given, then we convert to ktime_t and set the to
* pointer to the expiry value.
*/
if (end_time && !to) {
expire = timespec64_to_ktime(*end_time);
to = &expire;
}
// 进程状态设置为 TASK_INTERRUPTIBLE,进入睡眠直到超时
if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE,
to, slack))
timed_out = 1;
}
// 释放等待节点,重点是把等待节点从文件的等待队列删除掉
poll_freewait(&table);
return retval;
}
3. 等待与唤醒
3.0 相关数据结构
// 添加到文件等待队列的节点类型
struct poll_table_entry {
// 要监听的目标文件
struct file *filp;
// 要监听的事件
unsigned long key;
wait_queue_entry_t wait;
// 等待队列头
wait_queue_head_t *wait_address;
};
// 每次执行 select 调用时维护的等待队列
struct poll_wqueues {
// 调用 poll 操作时用于传递信息的对象
poll_table pt;
// inline_entries 空间不够用申请的等待节点列表
struct poll_table_page *table;
// 执行 select 的进程信息
struct task_struct *polling_task;
// 是否已唤醒
int triggered;
int error;
// 指向 inline_entries 里未使用的节点下标
int inline_index;
// 预申请的等待节点
struct poll_table_entry inline_entries[N_INLINE_POLL_ENTRIES];
};
// 如果 inline_entries 不够用,则以 poll_table_page 链表的形式存起来
struct poll_table_page {
struct poll_table_page * next;
struct poll_table_entry * entry;
struct poll_table_entry entries[0];
};
3.1 等待
static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)
{
// p->_qproc 对应了上面 wait->_qproc = NULL; 的优化
if (p && p->_qproc && wait_address)
p->_qproc(filp, wait_address, p);
}
void poll_initwait(struct poll_wqueues *pwq)
{
// 设置 poll 等待队列的处理函数为 __pollwait
init_poll_funcptr(&pwq->pt, __pollwait);
pwq->polling_task = current;
pwq->triggered = 0;
pwq->error = 0;
pwq->table = NULL;
pwq->inline_index = 0;
}
EXPORT_SYMBOL(poll_initwait);
static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
poll_table *p)
{
struct poll_wqueues *pwq = container_of(p, struct poll_wqueues, pt);
// 获取一个等待节点
struct poll_table_entry *entry = poll_get_entry(pwq);
if (!entry)
return;
entry->filp = get_file(filp);
entry->wait_address = wait_address;
// 设置敢兴趣的事件
entry->key = p->_key;
// 设置等待节点的回调函数为 pollwake,也即唤醒函数
init_waitqueue_func_entry(&entry->wait, pollwake);
// 指向本次 select 操作的 等待队列
entry->wait.private = pwq;
// 把等待节点添加到文件的等待队列上
add_wait_queue(wait_address, &entry->wait);
}
static inline void init_poll_funcptr(poll_table *pt, poll_queue_proc qproc)
{
pt->_qproc = qproc;
pt->_key = ~0UL; /* all events enabled */
}
3.2 唤醒
static int pollwake(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
{
struct poll_table_entry *entry;
// 找出等待节点 poll_table_entry
entry = container_of(wait, struct poll_table_entry, wait);
// 检测是否发生了敢兴趣的事件
if (key && !((unsigned long)key & entry->key))
return 0;
// 执行唤醒
return __pollwake(wait, mode, sync, key);
}
// 具体的唤醒逻辑就不展开了,涉及进程调度那些。
static int __pollwake(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
{
struct poll_wqueues *pwq = wait->private;
DECLARE_WAITQUEUE(dummy_wait, pwq->polling_task);
/*
* Although this function is called under waitqueue lock, LOCK
* doesn't imply write barrier and the users expect write
* barrier semantics on wakeup functions. The following
* smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
* and is paired with smp_store_mb() in poll_schedule_timeout.
*/
smp_wmb();
pwq->triggered = 1; // 设置为已触发
/*
* Perform the default wake up operation using a dummy
* waitqueue.
*
* TODO: This is hacky but there currently is no interface to
* pass in @sync. @sync is scheduled to be removed and once
* that happens, wake_up_process() can be used directly.
*/
return default_wake_function(&dummy_wait, mode, sync, key);
}
4. 小结
4.0 概要说明
- select 调用使用 fd_set 这个位图数据结构来传递输入事件、结果。
- select执行时,由于内核不能直接访问用户空间,因此需要用 3 个位图来存放输入的事件,再用3个位图来存放 poll 的结果。fd_set_bits 里的6个指针分别指向这 6 个位图的起始地址。
- 从 do_select 的逻辑可以看到:
- select 实现首先尝试在栈上分配一块内存来存放上述6个位图,如果存放不下则申请新的内存块来存放。
- 每次 select 调用都尝试对所有的文件分批次调用 poll,在每个批次之间会睡眠。
- 如果还没有文件有感兴趣的事件发生,则在被 poll 的文件的等待队列上加入等待节点。一旦某个文件有事件发生,则后续的文件不管是否有事件发生,都不再加入等待节点。
- 如果前一轮 poll 没有感兴趣的事件发生,进程进入睡眠,等待唤醒或直至超时或有信号要处理;进程再次运行时,仍然需要 poll 所有的文件。
- select 调用结束前,把本次调用添加到文件等待队列上的节点都删除掉。
4.1 不足
- 最多 poll 1024 个文件的限制。
- 要 poll 的文件数量很大时,为传递输入的感兴趣的事件和输出结果,在用户空间与内核空间需要拷贝很大的内存。
- 效率受限于要 poll 的文件数量,数量越多需要的时间就越多。