java并发容器

java并发容器(Map、List、BlockingQueue)(2011-03-0817:45:35)转载▼标签:java并发容器maplistblockingqueue杂谈分类:架构与开发

Java库本身就有多种线程安全的容器和同步工具,其中同步容器包括两部分:一个是Vector和Hashtable。另外还有JDK1.2中加入的同步包装类,这些类都是由Collections.synchronizedXXX工厂方法。同步容器都是线程安全的,但是对于复合操作,缺有些缺点:

① 迭代:在查觉到容器在迭代开始以后被修改,会抛出一个未检查异常ConcurrentModificationException,为了避免这个异常,需要在迭代期间,持有一个容器锁。但是锁的缺点也很明显,就是对性能的影响。

② 隐藏迭代器:StringBuilder的toString方法会通过迭代容器中的每个元素,另外容器的hashCode和equals方法也会间接地调用迭代。类似地,contailAll、removeAll、retainAll方法,以及容器作为参数的构造函数,都会对容器进行迭代。

③ 缺少即加入等一些复合操作

publicstaticObjectgetLast(Vectorlist){

intlastIndex=list.size()-1;

returnlist.get(lastIndex);

}

publicstaticvoiddeleteLast(Vectorlist){

intlastIndex=list.size()-1;

list.remove(lastIndex);

}

getLast和deleteLast都是复合操作,由先前对原子性的分析可以判断,这依然存在线程安全问题,有可能会抛出ArrayIndexOutOfBoundsException的异常,错误产生的逻辑如下所示:

解决办法就是通过对这些复合操作加锁

1并发容器类

正是由于同步容器类有以上问题,导致这些类成了鸡肋,于是Java5推出了并发容器类,Map对应的有ConcurrentHashMap,List对应的有CopyOnWriteArrayList。与同步容器类相比,它有以下特性:

1.1ConcurrentHashMap

·更加细化的锁机制。同步容器直接把容器对象做为锁,这样就把所有操作串行化,其实这是没必要的,过于悲观,而并发容器采用更细粒度的锁机制,名叫分离锁,保证一些不会发生并发问题的操作进行并行执行

·附加了一些原子性的复合操作。比如putIfAbsent方法

·迭代器的弱一致性,而非“及时失败”。它在迭代过程中不再抛出Concurrentmodificationexception异常,而是弱一致性。

·在并发高的情况下,有可能size和isEmpty方法不准确,但真正在并发环境下这些方法也没什么作用。

·另外,它还有一些附加的原子操作,缺少即加入、相等便移除、相等便替换。

putIfAbsent(Kkey,Vvalue),缺少即加入(如果该键已经存在,则不加入)

如果指定键已经不再与某个值相关联,则将它与给定值关联。

类似于下面的操作

If(!map.containsKey(key)){

returnmap.put(key,value);

}else{

returnmap.get(key);

}

remove(Objectkey,Objectvalue),相等便移除

只有目前将键的条目映射到给定值时,才移除该键的条目。

类似于下面的:

if(map.containsKey(key)&&map.get(key).equals(value)){

Map.remove();

returntrue;

}else{

returnfalse;

}

replace(Kkey,Vvalue)

replace(Kkey,VoldValue,VnewValue),相等便替换。

只有目前将键的条目映射到某一值时,才替换该键的条目。

上面提到的三个,都是原子的。在一些缓存应用中可以考虑代替HashMap/Hashtable。

1.2CopyOnWriteArrayList和CopyOnWriteArraySet

·CopyOnWriteArrayList采用写入时复制的方式避开并发问题。这其实是通过冗余和不可变性来解决并发问题,在性能上会有比较大的代价,但如果写入的操作远远小于迭代和读操作,那么性能就差别不大了。

应用它们的场合通常在数组相对较小,并且遍历操作的数量大大超过可变操作的数量时,这种场合应用它们非常好。它们所有可变的操作都是先取得后台数组的副本,对副本进行更改,然后替换副本,这样可以保证永远不会抛出ConcurrentModificationException移除。

2队列

Java中的队列接口就是Queue,它有会抛出异常的add、remove方法,在队尾插入元素以及对头移除元素,还有不会抛出异常的,对应的offer、poll方法。

2.1LinkedList

List实现了deque接口以及List接口,可以将它看做是这两种的任何一种。

Queuequeue=newLinkedList();

queue.offer("testone");

queue.offer("testtwo");

queue.offer("testthree");

queue.offer("testfour");

System.out.println(queue.poll());//testone

2.2PriorityQueue

一个基于优先级堆(简单的使用链表的话,可能插入的效率会比较低O(N))的无界优先级队列。优先级队列的元素按照其自然顺序进行排序,或者根据构造队列时提供的Comparator进行排序,具体取决于所使用的构造方法。优先级队列不允许使用null元素。依靠自然顺序的优先级队列还不允许插入不可比较的对象。

queue=newPriorityQueue();

queue.offer("testone");

queue.offer("testtwo");

queue.offer("testthree");

queue.offer("testfour");

System.out.println(queue.poll());//testfour

2.3ConcurrentLinkedQueue

基于链节点的,线程安全的队列。并发访问不需要同步。在队列的尾部添加元素,并在头部删除他们。所以只要不需要知道队列的大小,并发队列就是比较好的选择。

3阻塞队列

3.1生产者和消费者模式

生产者和消费者模式,生产者不需要知道消费者的身份或者数量,甚至根本没有消费者,他们只负责把数据放入队列。类似地,消费者也不需要知道生产者是谁,以及是谁给他们安排的工作。

而Java知道大家清楚这个模式的并发复杂性,于是乎提供了阻塞队列(BlockingQueue)来满足这个模式的需求。阻塞队列说起来很简单,就是当队满的时候写线程会等待,直到队列不满的时候;当队空的时候读线程会等待,直到队不空的时候。实现这种模式的方法很多,其区别也就在于谁的消耗更低和等待的策略更优。以LinkedBlockingQueue的具体实现为例,它的put源码如下:

publicvoidput(Ee)throwsInterruptedException{

if(e==null)thrownewNullPointerException();

intc=-1;

finalReentrantLockputLock=this.putLock;

finalAtomicIntegercount=this.count;

putLock.lockInterruptibly();

try{

try{

while(count.get()==capacity)

notFull.await();

}catch(InterruptedExceptionie){

notFull.signal();

//propagatetoanon-interruptedthread

throwie;

}

insert(e);

c=count.getAndIncrement();

if(c+1<capacity)

notFull.signal();

}finally{

putLock.unlock();

}

if(c==0)

signalNotEmpty();

}

撇开其锁的具体实现,其流程就是我们在操作系统课上学习到的标准生产者模式,看来那些枯燥的理论还是有用武之地的。其中,最核心的还是Java的锁实现,有兴趣的朋友可以再进一步深究一下。

阻塞队列Blockingqueue,提供了可阻塞的put和take方法,他们与可定时的offer和poll方法是等价。Put方法简化了处理,如果是有界队列,那么当队列满的时候,生成者就会阻塞,从而改消费者更多的追赶速度。

3.2ArrayBlockingQueue和LinkedBlockingQueue

FIFO的队列,与LinkedList(由链节点支持,无界)和ArrayList(由数组支持,有界)相似(Linked有更好的插入和移除性能,Array有更好的查找性能,考虑到阻塞队列的特性,移除头部,加入尾部,两个都区别不大),但是却拥有比同步List更好的并发性能。

另外,LinkedList永远不会等待,因为他是无界的。

BlockingQueue<String>queue=newArrayBlockingQueue<String>(5);

Producerp=newProducer(queue);

Consumerc1=newConsumer(queue);

Consumerc2=newConsumer(queue);

newThread(p).start();

newThread(c1).start();

newThread(c2).start();

classProducerimplementsRunnable{

privatefinalBlockingQueuequeue;

Producer(BlockingQueueq){queue=q;}

publicvoidrun(){

try{

for(inti=0;i<100;i++){

queue.put(produce());

}

}catch(InterruptedExceptionex){}

}

Stringproduce(){

Stringtemp=""+(char)('A'+(int)(Math.random()*26));

System.out.println("produce"+temp);

returntemp;

}

}

classConsumerimplementsRunnable{

privatefinalBlockingQueuequeue;

Consumer(BlockingQueueq){queue=q;}

publicvoidrun(){

try{

for(inti=0;i<100;i++){

consume(queue.take());

}

}catch(InterruptedExceptionex){}

}

voidconsume(Objectx){

System.out.println("cousume"+x.toString());

}

}

输出:

produceK

cousumeK

produceV

cousumeV

produceQ

cousumeQ

produceI

produceD

produceI

produceG

produceA

produceE

cousumeD

3.3PriorityBlockingQueue

一个按优先级堆支持的无界优先级队列队列,如果不希望按照FIFO的顺序进行处理,它非常有用。它可以比较元素本身的自然顺序,也可以使用一个Comparator排序。

3.4DelayQueue

一个优先级堆支持的,基于时间的调度队列。加入到队列中的元素必须实现新的Delayed接口(只有一个方法,LonggetDelay(java.util.concurrent.TimeUnitunit)),添加可以理立即返回,但是在延迟时间过去之前,不能从队列中取出元素,如果多个元素的延迟时间已到,那么最早失效链接/失效时间最长的元素将第一个取出。

staticclassNanoDelayimplementsDelayed{

longtigger;

NanoDelay(longi){

tigger=System.nanoTime()+i;

}

publicbooleanequals(Objectother){

return((NanoDelay)other).tigger==tigger;

}

publiclonggetDelay(TimeUnitunit){

longn=tigger-System.nanoTime();

returnunit.convert(n,TimeUnit.NANOSECONDS);

}

publiclonggetTriggerTime(){

returntigger;

}

publicintcompareTo(Delayedo){

longi=tigger;

longj=((NanoDelay)o).tigger;

if(i<j){

return-1;

}

if(i>j)

return1;

return0;

}

}

publicstaticvoidmain(String[]args)throwsInterruptedException{

Randomrandom=newRandom();

DelayQueue<NanoDelay>queue=newDelayQueue<NanoDelay>();

for(inti=0;i<5;i++){

queue.add(newNanoDelay(random.nextInt(1000)));

}

longlast=0;

for(inti=0;i<5;i++){

NanoDelaydelay=(NanoDelay)(queue.take());

longtt=delay.getTriggerTime();

System.out.println("Triggertime:"+tt);

if(i!=0){

System.out.println("Data:"+(tt-last));

}

last=tt;

}

}

3.5SynchronousQueue

不是一个真正的队列,因为它不会为队列元素维护任何存储空间,不过它维护一个排队的线程清单,这些线程等待把元素加入(enqueue)队列或者移出(dequeue)队列。也就是说,它非常直接的移交工作,减少了生产者和消费者之间移动数据的延迟时间,另外,也可以更快的知道反馈信息,当移交被接受时,它就知道消费者已经得到了任务。

因为SynChronousQueue没有存储的能力,所以除非另一个线程已经做好准备,否则put和take会一直阻止。它只有在消费者比较充足的时候比较合适。

4双端队列(Deque)

JAVA6中新增了两个容器Deque和BlockingDeque,他们分别扩展了Queue和BlockingQueue。Deque它是一个双端队列,允许高效的在头和尾分别进行插入和删除,它的实现分别是ArrayDeque和LinkedBlockingQueue。

双端队列使得他们能够工作在一种称为“窃取工作”的模式上面。

5最佳实践

1..同步的(synchronized)+HashMap,如果不存在,则计算,然后加入,该方法需要同步。

HashMapcache=newHashMap();

publicsynchronizedVcompute(Aarg){

Vresult=cace.get(arg);

Ii(result==null){

result=c.compute(arg);

Cache.put(result);

}

Returnresult;

}

2.用ConcurrentHashMap代替HashMap+同步.,这样的在get和set的时候也基本能保证原子性。但是会带来重复计算的问题.

Map<A,V>cache=newConcurrentHashMap<A,V>();

publicVcompute(Aarg){

Vresult=cace.get(arg);

Ii(result==null){

result=c.compute(arg);

Cache.put(result);

}

Returnresult;

}

3.采用FutureTask代替直接存储值,这样可以在一开始创建的时候就将Task加入

Map<A,FutureTask<V>>cache=newConcurrentHashMap<A,FutureTask<V>>();

publicVcompute(Aarg){

FutureTask<T>f=cace.get(arg);

//检查再运行的缺陷

Ii(f==null){

Callable<V>evel=newCallable(){

PublicVcall()throws..{

returnc.compute(arg);

}

};

FutureTask<T>ft=newFutureTask<T>(evel);

f=ft;

cache.put(arg,ft;

ft.run();

}

Try{

//阻塞,直到完成

returnf.get();

}cach(){

}

}

4.上面还有检查再运行的缺陷,在高并发的情况下啊,双方都没发现FutureTask,并且都放入Map(后一个被前一个替代),都开始了计算。

这里的解决方案在于,当他们都要放入Map的时候,如果可以有原子方法,那么已经有了以后,后一个FutureTask就加入,并且启动。

publicVcompute(Aarg){

FutureTask<T>f=cace.get(arg);

//检查再运行的缺陷

Ii(f==null){

Callable<V>evel=newCallable(){

PublicVcall()throws..{

returnc.compute(arg);

}

};

FutureTask<T>ft=newFutureTask<T>(evel);

f=cache.putIfAbsent(args,ft);//如果已经存在,返回存在的值,否则返回null

if(f==null){f=ft;ft.run();}//以前不存在,说明应该开始这个计算

else{ft=null;}//取消该计算

}

Try{

//阻塞,直到完成

returnf.get();

}cach(){

}

}

5.上面的程序上来看已经完美了,不过可能带来缓存污染的可能性。如果一个计算被取消或者失败,那么这个键以后的值永远都是失败了;一种解决方案是,发现取消或者失败的task,就移除它,如果有Exception,也移除。

6.另外,如果考虑缓存过期的问题,可以为每个结果关联一个过去时间,并周期性的扫描,清除过期的缓存。(过期时间可以用Delayed接口实现,参考DelayQueue,给他一个大于当前时间XXX的时间,,并且不断减去当前时间,直到返回负数,说明延迟时间已到了。)

Java集合容器总结。

按数据结构主要有以下几类:

1,内置容器:数组

2,list容器:Vetor,Stack,ArrayList,LinkedList,

CopyOnWriteArrayList(1.5),AttributeList(1.5),RoleList(1.5),RoleUnresolvedList(1.5),

ConcurrentLinkedQueue(1.5),ArrayBlockingQueue(1.5),LinkedBlockingQueue(1.5),

PriorityQueue(1.5),PriorityBlockingQueue(1.5),SynchronousQueue(1.5)

3,set容器:HashSet(1.2),LinkedHashSet(1.4),TreeSet(1.2),

CopyOnWriteArraySet(1.5),EnumSet(1.5),JobStateReasons。

4,map容器:Hashtable,HashMap(1.2),TreeMap(1.2),LinkedHashMap(1.4),WeakHashMap(1.2),

IdentityHashMap(1.4),ConcurrentMap(1.5),concurrentHashMap(1.5)。

Set接口继承Collection,但不允许重复,使用自己内部的一个排列机制。

List接口继承Collection,允许重复,以元素安插的次序来放置元素,不会重新排列。

Map接口是一组成对的键-值对象,即所持有的是key-valuepairs。Map中不能有重复的key。拥有自己的内部排列机制。

按新旧主要有以下几类:

Java1.2前的容器:Vector,Stack,Hashtable。

Java1.2的容器:HashSet,TreeSet,HashMap,TreeMap,WeakHashMap

Java1.4的容器:LinkedHashSet,LinkedHashMap,IdentityHashMap,ConcurrentMap,concurrentHashMap

java1.5新增:CopyOnWriteArrayList,AttributeList,RoleList,RoleUnresolvedList,

ConcurrentLinkedQueue,ArrayBlockingQueue,LinkedBlockingQueue,PriorityBlockingQueue

ArrayBlockingQueue,CopyOnWriteArraySet,EnumSet,

未知:JobStateReasons

按线程安全主要有以下几类:

线程安全

一,使用锁:

完全不支持并发:

list容器:Vetor,Stack,CopyOnWriteArrayList,ArrayBlockingQueue,

LinkedBlockingQueue,PriorityBlockingQueue,SynchronousQueue

set容器:CopyOnWriteArraySet

map容器:Hashtable

部分支持并发:

list容器:无

set容器:无

map容器:concurrentHashMap

使用非阻塞算法:

list容器:ConcurrentLinkedQueue

set容器:无

map容器:无

二,非线程安全:

list容器:ArrayList,LinkedList,AttributeList,RoleList,RoleUnresolvedList,PriorityQueue

set容器:HashSet,TreeSet,LinkedHashSet,EnumSet

map容器:HashMap,TreeMap,LinkedHashMap,WeakHashMap,IdentityHashMap,EnumMap

按遍历安全主要有以下几类:

一,遍历安全:

可并发遍历:

list容器:CopyOnWriteArrayList,ConcurrentLinkedQueue

set容器:CopyOnWriteArraySet,EnumSet,EnumMap

map容器:无

不可并发遍历:

list容器:Vetor,Stack,Hashtable,ArrayBlockingQueue,

LinkedBlockingQueue,PriorityBlockingQueue,SynchronousQueue

set容器:无

map容器:Hashtable,concurrentHashMap

注意1:concurrentHashMap迭代器它们不会抛出ConcurrentModificationException。不过,迭代器被设计成每次仅由一个线程使用。

二,遍历不安全:

会抛异常ConcurrentModificationException:

list容器:ArrayList,LinkedList,AttributeList,RoleList,RoleUnresolvedList

set容器:HashSet,TreeSet,TreeSet,LinkedHashSet

map容器:HashMap,TreeMap,LinkedHashMap,WeakHashMap,IdentityHashMap

注意1:返回的迭代器是弱一致的:它们不会抛出ConcurrentModificationException,

也不一定显示在迭代进行时发生的任何映射修改的效果的容器有:

EnumSet,EnumMap

按遍历是否有序性分类

存储数据有序:

list容器:ConcurrentLinkedQueue(1.5),ArrayBlockingQueue(1.5),LinkedBlockingQueue(1.5),

SynchronousQueue(1.5)

set容器:TreeSet(1.2).(他们实现了set接口),

CopyOnWriteArraySet(1.5),EnumSet(1.5),JobStateReasons。

map容器:TreeMap(1.2),LinkedHashMap(1.4)。

一定规则下存储数据有序:

list容器:Stack,Vetor,ArrayList,LinkedList,CopyOnWriteArrayList(1.5),AttributeList(1.5),RoleList(1.5),RoleUnresolvedList(1.5)

set容器:无

map容器:无

遍历无序但移除有序:

list容器:PriorityQueue(1.5),PriorityBlockingQueue(1.5)

set容器:无

map容器:无

无论如何都无序:

list容器:无

set容器:HashSet(1.2),LinkedHashSet(1.4)

map容器:Hashtable,HashMap(1.2),WeakHashMap(1.2),IdentityHashMap(1.4),

ConcurrentMap(1.5),concurrentHashMap(1.5)

可以按自然顺序(参见Comparable)或比较器进行排序的有:

list容器:PriorityQueue(1.5),PriorityBlockingQueue

set容器:TreeSet(1.2)

map容器:TreeMap(1.2)

实现了RandomAccess接口的有:

ArrayList,AttributeList,CopyOnWriteArrayList,RoleList,RoleUnresolvedList,Stack,Vector

RandomAccess接口是List实现所使用的标记接口,用来表明其支持快速(通常是固定时间)随机访问。此接口的主要目的是允许一般的算法更改其行为,从而在将其应用到随机或连续访问列表时能提供良好的性能。

在对List特别的遍历算法中,要尽量来判断是属于RandomAccess(如ArrayList)还是SequenceAccess(如LinkedList),

因为适合RandomAccessList的遍历算法,用在SequenceAccessList上就差别很大,

即对于实现了RandomAccess接口的类实例而言,此循环

for(inti=0,i<list.size();i++)

list.get(i);

的运行速度要快于以下循环:

for(Iteratori=list.iterator();i.hasNext();)

i.next();

相关推荐