opencv python Meanshift 和 Camshift
Meanshift
Meanshift 算法的基本原理简单,假设我们有一堆点,和一个小的圆形窗口,Meanshift 算法就是不断移动小圆形窗口,直到找到圆形区域内最大灰度密度处为止.
初始窗口以蓝色圆圈显示,名称为“C1”,其原始中心标有蓝色矩形,名为“C1_o”.但是,这个窗口当中所有点的点集构成的质心在蓝色圆形点处,圆环的型心和质心并不重合,所以,移动蓝色的窗口以使型心与之前得到的质心重合.
不断执行上面的移动过程,直到型心和质心大致重合结束.
通常通过直方图反投影图像和初始目标位置,当物体移动时,移动反映在直方图反投影图像中,最后圆形的窗口会落到像素分布最大的地方,也就是图中的绿色圈并命名为C2.
meanshift in OpenCV
首先要设定目标,并计算的直方图,然后对这个直方图在每一帧当中进行反向投影.需要提供一个初试的窗口位置,计算HSV模型当中H(色调)的直方图,为了避免低亮度造成的影响,使用 cv2.inRange()
将低亮度值忽略.
import numpy as np import cv2 import matplotlib.pyplot as plt cap = cv2.VideoCapture('test.mp4') # take first frame of the video ret,frame = cap.read() # setup initial location of window r,h,c,w = 50,200,50,100 # simply hardcoded the values track_window = (c,r,w,h) # set up the ROI for tracking roi = frame[r:r+h, c:c+w] hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.))) roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180]) cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX) # Setup the termination criteria, either 10 iteration or move by atleast 1 pt term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) while(1): ret ,frame = cap.read() if ret == True: hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1) # apply meanshift to get the new location ret, track_window = cv2.CamShift(dst, track_window, term_crit) # Draw it on image pts = cv2.boxPoints(ret) pts = np.int0(pts) img2 = cv2.polylines(frame,[pts],True, 255,2) cv2.imshow('img2',img2) k = cv2.waitKey(60) & 0xff if k == 27: break else: cv2.imwrite(chr(k)+".jpg",img2) else: break cv2.destroyAllWindows() cap.release()
CamShift
在目标跟踪中,物体的大小不是固定的,所以设置的跟踪窗口也应该随之变化,CAMshift算法,首先使用meanshift算法找到目标,然后调整窗口大小,而且还会计算目标对象的的最佳外接圆的角度,并调整窗口,并使用调整后的窗口对物体继续追踪.
Camshift in OpenCV
它与meanshift几乎相同,但它返回一个旋转的矩形.
import numpy as np import cv2 import matplotlib.pyplot as plt cap = cv2.VideoCapture('test.mp4') # take first frame of the video ret,frame = cap.read() # setup initial location of window r,h,c,w = 50,200,50,100 # simply hardcoded the values track_window = (c,r,w,h) # set up the ROI for tracking roi = frame[r:r+h, c:c+w] hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.))) roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180]) cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX) # Setup the termination criteria, either 10 iteration or move by atleast 1 pt term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) while(1): ret ,frame = cap.read() if ret == True: hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1) # apply meanshift to get the new location ret, track_window = cv2.CamShift(dst, track_window, term_crit) # Draw it on image pts = cv2.boxPoints(ret) pts = np.int0(pts) img2 = cv2.polylines(frame,[pts],True, 255,2) cv2.imshow('img2',img2) k = cv2.waitKey(60) & 0xff if k == 27: break else: cv2.imwrite(chr(k)+".jpg",img2) else: break cv2.destroyAllWindows() cap.release()
相关推荐
learningCV 2020-11-10
learningCV 2020-08-25
huang00 2020-08-21
wangdaren 2020-08-15
BeanJoy 2020-07-28
csdmeb 2020-06-25
wangdaren 2020-06-14
pythonxuexi 2020-06-13
woniulx0 2020-06-13
greent00 2020-06-10
liangzuojiayi 2020-06-09
greent00 2020-06-09
csdmeb 2020-06-08
BeanJoy 2020-06-06
lihuifei 2020-06-05
wangdaren 2020-06-03
wangdaren 2020-05-31
greent00 2020-05-30