这个 Python 知识点,90% 的人都得挂~
学习 Python 这么久了,说起 Python 的优雅之处,能让我脱口而出的, Descriptor(描述符)特性可以排得上号。
描述符 是Python 语言独有的特性,它不仅在应用层使用,在语言语法糖的实现上也有使用到(在下面的文章会一一介绍)。
当你点进这篇文章时
-
你也许没学过描述符,甚至没听过描述符。
-
或者你对描述符只是一知半解
无论你是哪种,本篇都将带你全面的学习描述符,一起来感受 Python 语言的优雅。
1. 为什么要使用描述符?
假想你正在给学校写一个成绩管理系统,并没有太多编码经验的你,可能会这样子写。
class Student: def __init__(self, name, math, chinese, english): self.name = name self.math = math self.chinese = chinese self.english = english def __repr__(self): return "<Student: {}, math:{}, chinese: {}, english:{}>".format( self.name, self.math, self.chinese, self.english )
看起来一切都很合理
>>> std1 = Student('小明', 76, 87, 68) >>> std1 <Student: 小明, math:76, chinese: 87, english:68>
但是程序并不像人那么智能,不会自动根据使用场景判断数据的合法性,如果老师在录入成绩的时候,不小心录入了将成绩录成了负数,或者超过100,程序是无法感知的。
聪明的你,马上在代码中加入了判断逻辑。
class Student: def __init__(self, name, math, chinese, english): self.name = name if 0 <= math <= 100: self.math = math else: raise ValueError("Valid value must be in [0, 100]") if 0 <= chinese <= 100: self.chinese = chinese else: raise ValueError("Valid value must be in [0, 100]") if 0 <= chinese <= 100: self.english = english else: raise ValueError("Valid value must be in [0, 100]") def __repr__(self): return "<Student: {}, math:{}, chinese: {}, english:{}>".format( self.name, self.math, self.chinese, self.english )
这下程序稍微有点人工智能了,能够自己明辨是非了。
程序是智能了,但在 __init__
里有太多的判断逻辑,很影响代码的可读性。巧的是,你刚好学过 Property 特性,可以很好的应用在这里。于是你将代码修改成如下,代码的可读性瞬间提升了不少
class Student: def __init__(self, name, math, chinese, english): self.name = name self.math = math self.chinese = chinese self.english = english @property def math(self): return self._math @math.setter def math(self, value): if 0 <= value <= 100: self._math = value else: raise ValueError("Valid value must be in [0, 100]") @property def chinese(self): return self._chinese @chinese.setter def chinese(self, value): if 0 <= value <= 100: self._chinese = value else: raise ValueError("Valid value must be in [0, 100]") @property def english(self): return self._english @english.setter def english(self, value): if 0 <= value <= 100: self._english = value else: raise ValueError("Valid value must be in [0, 100]") def __repr__(self): return "<Student: {}, math:{}, chinese: {}, english:{}>".format( self.name, self.math, self.chinese, self.english )
程序还是一样的人工智能,非常好。
你以为你写的代码,已经非常优秀,无懈可击了。
没想到,人外有天,你的主管看了你的代码后,深深地叹了口气:类里的三个属性,math、chinese、english,都使用了 Property 对属性的合法性进行了有效控制。功能上,没有问题,但就是太铝耍霰淞康暮戏ㄐ月呒际且谎模灰笥0,小于100 就可以,代码重复率太高了,这里三个成绩还好,但假设还有地理、生物、历史、化学等十几门的成绩呢,这代码简直没法忍。去了解一下 Python 的描述符吧。
经过主管的指点,你知道了「描述符」这个东西。怀着一颗敬畏之心,你去搜索了下关于 描述符的用法。
其实也很简单,一个实现了 描述符协议
的类就是一个描述符。
什么描述符协议:在类里实现了 __get__()
、 __set__()
、 __delete__()
其中至少一个方法。
__get__
:用于访问属性。它返回属性的值,若属性不存在、不合法等都可以抛出对应的异常。__set__
:将在属性分配操作中调用。不会返回任何内容。__delete__
:控制删除操作。不会返回内容。
对描述符有了大概的了解后,你开始重写上面的方法。
如前所述,Score 类是一个描述符,当从 Student 的实例访问 math、chinese、english这三个属性的时候,都会经过 Score 类里的三个特殊的方法。这里的 Score 避免了 使用Property 出现大量的代码无法复用的尴尬。
class Score: def __init__(self, default=0): self._score = default def __set__(self, instance, value): if not isinstance(value, int): raise TypeError('Score must be integer') if not 0 <= value <= 100: raise ValueError('Valid value must be in [0, 100]') self._score = value def __get__(self, instance, owner): return self._score def __delete__(self): del self._score class Student: math = Score(0) chinese = Score(0) english = Score(0) def __init__(self, name, math, chinese, english): self.name = name self.math = math self.chinese = chinese self.english = english def __repr__(self): return "<Student: {}, math:{}, chinese: {}, english:{}>".format( self.name, self.math, self.chinese, self.english )
实现的效果和前面的一样,可以对数据的合法性进行有效控制(字段类型、数值区间等)
以上,我举了下具体的实例,从最原始的编码风格到 Property ,最后引出描述符。由浅入深,一步一步带你感受到描述符的优雅之处。
到这里,你需要记住的只有一点,就是描述符给我们带来的编码上的便利,它在实现 保护属性不受修改
、 属性类型检查
的基本功能,同时有大大提高代码的复用率。
2. 描述符的访问规则
描述符分两种:
- 数据描述符:实现了
__get__
和__set__
两种方法的描述符 - 非数据描述符:只实现了
__get__
一种方法的描述符
你一定会问,他们有什么区别呢?网上的讲解,我看过几个,很多都把一个简单的东西讲得复杂了。
其实就一句话, 数据描述器和非数据描述器的区别在于:它们相对于实例的字典的优先级不同。
如果实例字典中有与描述符同名的属性,如果描述符是数据描述符,优先使用数据描述符,如果是非数据描述符,优先使用字典中的属性。
这边还是以上节的成绩管理的例子来说明,方便你理解。
# 数据描述符 class DataDes: def __init__(self, default=0): self._score = default def __set__(self, instance, value): self._score = value def __get__(self, instance, owner): print("访问数据描述符里的 __get__") return self._score # 非数据描述符 class NoDataDes: def __init__(self, default=0): self._score = default def __get__(self, instance, owner): print("访问非数据描述符里的 __get__") return self._score class Student: math = DataDes(0) chinese = NoDataDes(0) def __init__(self, name, math, chinese): self.name = name self.math = math self.chinese = chinese def __getattribute__(self, item): print("调用 __getattribute__") return super(Student, self).__getattribute__(item) def __repr__(self): return "<Student: {}, math:{}, chinese: {},>".format( self.name, self.math, self.chinese)
需要注意的是,math 是数据描述符,而 chinese 是非数据描述符。从下面的验证中,可以看出,当实例属性和数据描述符同名时,会优先访问数据描述符(如下面的math),而当实例属性和非数据描述符同名时,会优先访问实例属性( __getattribute__
)
>>> std = Student('xm', 88, 99) >>> >>> std.math 调用 __getattribute__ 访问数据描述符里的 __get__ 88 >>> std.chinese 调用 __getattribute__ 99
讲完了数据描述符和非数据描述符,我们还需要了解的对象属性的查找规律。
当我们对一个实例属性进行访问时,Python 会按 obj.__dict__
→ type(obj).__dict__
→ type(obj)的父类.__dict__
顺序进行查找,如果查找到目标属性并发现是一个描述符,Python 会调用描述符协议来改变默认的控制行为。
3. 基于描述符如何实现property
经过上面的讲解,我们已经知道如何定义描述符,且明白了描述符是如何工作的。
正常人所见过的描述符的用法就是上面提到的那些,我想说的是那只是描述符协议最常见的应用之一,或许你还不知道,其实有很多 Python 的特性的底层实现机制都是基于 描述符协议
的,比如我们熟悉的 @property
、 @classmethod
、 @staticmethod
和 super
等。
先来说说 property
吧。
有了前面的基础,我们知道了 property 的基本用法。这里我直接切入主题,从第一篇的例子里精简了一下。
class Student: def __init__(self, name): self.name = name @property def math(self): return self._math @math.setter def math(self, value): if 0 <= value <= 100: self._math = value else: raise ValueError("Valid value must be in [0, 100]")
不防再简单回顾一下它的用法,通过property装饰的函数,如例子中的 math 会变成 Student 实例的属性。而对 math 属性赋值会进入 使用 math.setter
装饰函数的逻辑代码块。
为什么说 property 底层是基于描述符协议的呢?通过 PyCharm 点击进入 property 的源码,很可惜,只是一份类似文档一样的伪源码,并没有其具体的实现逻辑。
不过,从这份伪源码的魔法函数结构组成,可以大体知道其实现逻辑。
这里我自己通过模仿其函数结构,结合「描述符协议」来自己实现类 property
特性。
代码如下:
class TestProperty(object): def __init__(self, fget=None, fset=None, fdel=None, doc=None): self.fget = fget self.fset = fset self.fdel = fdel self.__doc__ = doc def __get__(self, obj, objtype=None): print("in __get__") if obj is None: return self if self.fget is None: raise AttributeError return self.fget(obj) def __set__(self, obj, value): print("in __set__") if self.fset is None: raise AttributeError self.fset(obj, value) def __delete__(self, obj): print("in __delete__") if self.fdel is None: raise AttributeError self.fdel(obj) def getter(self, fget): print("in getter") return type(self)(fget, self.fset, self.fdel, self.__doc__) def setter(self, fset): print("in setter") return type(self)(self.fget, fset, self.fdel, self.__doc__) def deleter(self, fdel): print("in deleter") return type(self)(self.fget, self.fset, fdel, self.__doc__)
然后 Student 类,我们也相应改成如下
class Student: def __init__(self, name): self.name = name # 其实只有这里改变 @TestProperty def math(self): return self._math @math.setter def math(self, value): if 0 <= value <= 100: self._math = value else: raise ValueError("Valid value must be in [0, 100]")
为了尽量让你少产生一点疑惑,我这里做两点说明:
-
使用
TestProperty
装饰后,math
不再是一个函数,而是TestProperty
类的一个实例。所以第二个math函数可以使用math.setter
来装饰,本质是调用TestProperty.setter
来产生一个新的TestProperty
实例赋值给第二个math
。 -
第一个
math
和第二个math
是两个不同TestProperty
实例。但他们都属于同一个描述符类(TestProperty),当对 math 对于赋值时,就会进入TestProperty.__set__
,当对math 进行取值里,就会进入TestProperty.__get__
。仔细一看,其实最终访问的还是Student实例的_math
属性。
说了这么多,还是运行一下,更加直观一点。
# 运行后,会直接打印这一行,这是在实例化 TestProperty 并赋值给第二个math in setter >>> >>> s1.math = 90 in __set__ >>> s1.math in __get__ 90
对于以上理解 property
的运行原理有困难的同学,请务必参照我上面写的两点说明。如有其他疑问,可以加微信与我进行探讨。
4. 基于描述符如何实现staticmethod
说完了 property
,这里再来讲讲 @classmethod
和 @staticmethod
的实现原理。
我这里定义了一个类,用了两种方式来实现静态方法。
class Test: @staticmethod def myfunc(): print("hello") # 上下两种写法等价 class Test: def myfunc(): print("hello") # 重点:这就是描述符的体现 myfunc = staticmethod(myfunc)
这两种写法是等价的,就好像在 property
一样,其实以下两种写法也是等价的。
@TestProperty def math(self): return self._math math = TestProperty(fget=math)
话题还是转回到 staticmethod
这边来吧。
由上面的注释,可以看出 staticmethod
其实就相当于一个描述符类,而 myfunc
在此刻变成了一个描述符。关于 staticmethod
的实现,你可以参照下面这段我自己写的代码,加以理解。
调用这个方法可以知道,每调用一次,它都会经过描述符类的 __get__
。
>>> Test.myfunc() in staticmethod __get__ hello >>> Test().myfunc() in staticmethod __get__ hello
5. 基于描述符如何实现classmethod
同样的 classmethod
也是一样。
class classmethod(object): def __init__(self, f): self.f = f def __get__(self, instance, owner=None): print("in classmethod __get__") def newfunc(*args): return self.f(owner, *args) return newfunc class Test: def myfunc(cls): print("hello") # 重点:这就是描述符的体现 myfunc = classmethod(myfunc)
验证结果如下
>>> Test.myfunc() in classmethod __get__ hello >>> Test().myfunc() in classmethod __get__ hello
讲完了 property
、 staticmethod
和 classmethod
与 描述符的关系。我想你应该对描述符在 Python 中的应用有了更深的理解。对于 super 的实现原理,就交由你来自己完成。
6. 所有实例共享描述符
通过以上内容的学习,你是不是觉得自己已经对描述符足够了解了呢?
可在这里,我想说以上的描述符代码都有问题。
问题在哪里呢?请看下面这个例子。
class Score: def __init__(self, default=0): self._value = default def __get__(self, instance, owner): return self._value def __set__(self, instance, value): if 0 <= value <= 100: self._value = value else: raise ValueError class Student: math = Score(0) chinese = Score(0) english = Score(0) def __repr__(self): return "<Student math:{}, chinese:{}, english:{}>".format(self.math, self.chinese, self.english)
Student 里没有像前面那样写了构造函数,但是关键不在这儿,没写只是因为没必要写。
然后来看一下会出现什么样的问题呢
>>> std1 = Student() >>> std1 <Student math:0, chinese:0, english:0> >>> std1.math = 85 >>> std1 <Student math:85, chinese:0, english:0> >>> std2 = Student() >>> std2 # std2 居然共享了std1 的属性值 <Student math:85, chinese:0, english:0> >>> std2.math = 100 >>> std1 # std2 也会改变std1 的属性值 <Student math:100, chinese:0, english:0>
从结果上来看,std2 居然共享了 std1 的属性值,只要其中一个实例的变量发生改变,另一个实例的变量也会跟着改变。
探其根因,是由于此时 math,chinese,english 三个全部是类变量,导致 std2 和 std1 在访问 math,chinese,english 这三个变量时,其实都是访问类变量。
问题是不是来了?小明和小强的分数怎么可能是绑定的呢?这很明显与实际业务不符。
使用描述符给我们制造了便利,却无形中给我们带来了麻烦,难道这也是描述符的特性吗?
描述符是个很好用的特性,会出现这个问题,是由于我们之前写的描述符代码都是错误的。
描述符的机制,在我看来,只是抢占了访问顺序,而具体的逻辑却要因地制宜,视情况而定。
如果要把 math,chinese,english 这三个变量变成实例之间相互隔离的属性,应该这么写。
class Score: def __init__(self, subject): self.name = subject def __get__(self, instance, owner): return instance.__dict__[self.name] def __set__(self, instance, value): if 0 <= value <= 100: instance.__dict__[self.name] = value else: raise ValueError class Student: math = Score("math") chinese = Score("chinese") english = Score("english") def __init__(self, math, chinese, english): self.math = math self.chinese = chinese self.english = english def __repr__(self): return "<Student math:{}, chinese:{}, english:{}>".format(self.math, self.chinese, self.english)
引导程序逻辑进入描述符之后,不管你是获取属性,还是设置属性,都是直接作用于 instance 的。
这段代码,你可以仔细和前面的对比一下。
不难看出:
-
之前的错误代码,更像是把描述符当做了存储节点。