最近把《java并发编程实战》-Java Consurrency in Practice 重温了一遍,把书中提到的一些常用工具记录于此:
一、闭锁(门栓)-CountDownLatch
适用场景:多线程测试时,通常为了精确计时,要求所有线程都ready后,才开始执行,防止有线程先起跑,造成不公平,类似的,所有线程执行完,整个程序才算运行完成。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | /**
* 闭锁测试(菩提树下的杨过 http://yjmyzz.cnblogs.com/)
*
* @throws InterruptedException
*/
@Test
public void countdownLatch() throws InterruptedException {
CountDownLatch startLatch = new CountDownLatch( 1 ); //类似发令枪
CountDownLatch endLatch = new CountDownLatch( 10 ); //这里的数量,要与线程数相同
for ( int i = 0 ; i < 10 ; i++) {
Thread t = new Thread(() -> {
try {
startLatch.await(); //先等着,直到发令枪响,防止有线程先run
System.out.println(Thread.currentThread().getName() + " is running..." );
Thread.sleep( 10 );
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
} finally {
endLatch.countDown(); //每个线程执行完成后,计数
}
});
t.setName( "线程-" + i);
t.start();
}
long start = System.currentTimeMillis();
startLatch.countDown(); //发令枪响,所有线程『开跑』
endLatch.await(); //等所有线程都完成
long end = System.currentTimeMillis();
System.out.println( "done! exec time => " + (end - start) + " ms" );
}
|
执行结果:
线程-1 is running...
线程-5 is running...
线程-8 is running...
线程-4 is running...
线程-3 is running...
线程-0 is running...
线程-2 is running...
线程-9 is running...
线程-7 is running...
线程-6 is running...
done! exec time => 13 ms
注:大家可以把第14行注释掉,再看看运行结果有什么不同。
二、信号量(Semaphore)
适用场景:用于资源数有限制的并发访问场景。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | public class BoundedHashSet<T> {
private final Set<T> set;
private final Semaphore semaphore;
public BoundedHashSet( int bound) {
this .set = Collections.synchronizedSet( new HashSet<T>());
this .semaphore = new Semaphore(bound);
}
public boolean add(T t) throws InterruptedException {
if (!semaphore.tryAcquire( 5 , TimeUnit.SECONDS)) {
return false ;
}
;
boolean added = false ;
try {
added = set.add(t);
return added;
} finally {
if (!added) {
semaphore.release();
}
}
}
public boolean remove(Object o) {
boolean removed = set.remove(o);
if (removed) {
semaphore.release();
}
return removed;
}
}
@Test
public void semaphoreTest() throws InterruptedException {
BoundedHashSet<String> set = new BoundedHashSet<>( 5 );
for ( int i = 0 ; i < 6 ; i++) {
if (set.add(i + "" )) {
System.out.println(i + " added !" );
} else {
System.out.println(i + " not add to Set!" );
}
}
}
|
上面的示例将一个普通的Set变成了有界容器。执行结果如下:
0 added !
1 added !
2 added !
3 added !
4 added !
5 not add to Set!
三、栅栏CyclicBarrier
这个跟闭锁类似,可以通过代码设置一个『屏障』点,其它线程到达该点后才能继续,常用于约束其它线程都到达某一状态后,才允许做后面的事情。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | public class Worker extends Thread {
private CyclicBarrier cyclicBarrier;
public Worker(CyclicBarrier cyclicBarrier) {
this .cyclicBarrier = cyclicBarrier;
}
private void step1() {
System.out.println( this .getName() + " step 1 ..." );
}
private void step2() {
System.out.println( this .getName() + " step 2 ..." );
}
public void run() {
step1();
try {
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
step2();
}
}
@Test
public void cyclicBarrierTest() throws InterruptedException, BrokenBarrierException {
CyclicBarrier cyclicBarrier = new CyclicBarrier( 11 );
for ( int i = 0 ; i < 10 ; i++) {
Worker w = new Worker(cyclicBarrier);
w.start();
}
cyclicBarrier.await();
}
|
这里我们假设有一个worder线程,里面有2步操作,要求所有线程完成step1后,才能继续step2.执行结果如下:
Thread-0 step 1 ...
Thread-1 step 1 ...
Thread-2 step 1 ...
Thread-3 step 1 ...
Thread-4 step 1 ...
Thread-5 step 1 ...
Thread-6 step 1 ...
Thread-7 step 1 ...
Thread-8 step 1 ...
Thread-9 step 1 ...
Thread-9 step 2 ...
Thread-0 step 2 ...
Thread-3 step 2 ...
Thread-4 step 2 ...
Thread-6 step 2 ...
Thread-2 step 2 ...
Thread-1 step 2 ...
Thread-8 step 2 ...
Thread-7 step 2 ...
Thread-5 step 2 ...
四、Exchanger
如果2个线程需要交换数据,Exchanger就能派上用场了,见下面的示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | @Test
public void exchangerTest() {
Exchanger<String> exchanger = new Exchanger<>();
Thread t1 = new Thread(() -> {
String temp = "AAAAAA" ;
System.out.println( "thread 1 交换前:" + temp);
try {
temp = exchanger.exchange(temp);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println( "thread 1 交换后:" + temp);
});
Thread t2 = new Thread(() -> {
String temp = "BBBBBB" ;
System.out.println( "thread 2 交换前:" + temp);
try {
temp = exchanger.exchange(temp);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println( "thread 2 交换后:" + temp);
});
t1.start();
t2.start();
}
|
执行结果:
thread 1 交换前:AAAAAA
thread 2 交换前:BBBBBB
thread 2 交换后:AAAAAA
thread 1 交换后:BBBBBB
五、FutureTask/Future
一些很耗时的操作,可以用Future转化成异步,不阻塞后续的处理,直到真正需要返回结果时调用get拿到结果
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | @Test
public void futureTaskTest() throws ExecutionException, InterruptedException, TimeoutException {
Callable<String> callable = () -> {
System.out.println( "很耗时的操作处理中。。。" );
Thread.sleep( 5000 );
return "done" ;
};
FutureTask<String> futureTask = new FutureTask<>(callable);
System.out.println( "就绪。。。" );
new Thread(futureTask).start();
System.out.println( "主线程其它处理。。。" );
System.out.println(futureTask.get());
System.out.println( "处理完成!" );
System.out.println( "-----------------" );
System.out.println( "executor 就绪。。。" );
ExecutorService executorService = Executors.newSingleThreadExecutor();
Future<String> future = executorService.submit(callable);
System.out.println(future.get( 10 , TimeUnit.SECONDS));
}
|
执行结果:
就绪。。。
主线程其它处理。。。
很耗时的操作处理中。。。
done
处理完成!
-----------------
executor 就绪。。。
很耗时的操作处理中。。。
done
六、阻塞队列BlockingQueue
阻塞队列可以在线程间实现生产者-消费者模式。比如下面的示例:线程producer模拟快速生产数据,而线程consumer模拟慢速消费数据,当达到队列的上限时(即:生产者产生的数据,已经放不下了),队列就堵塞住了。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | @Test
public void blockingQueueTest() throws InterruptedException {
final BlockingQueue<String> blockingDeque = new ArrayBlockingQueue<>( 5 );
Thread producer = new Thread() {
public void run() {
Random rnd = new Random();
while ( true ) {
try {
int i = rnd.nextInt( 10000 );
blockingDeque.put(i + "" );
System.out.println( this .getName() + " 产生了一个数字:" + i);
Thread.sleep(rnd.nextInt( 50 )); //模拟生产者快速生产
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
}
};
producer.setName( "producer 1" );
Thread consumer = new Thread() {
public void run() {
while ( true ) {
Random rnd = new Random();
try {
String i = blockingDeque.take();
System.out.println( this .getName() + " 消费了一个数字:" + i);
Thread.sleep(rnd.nextInt( 10000 )); //消费者模拟慢速消费
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
}
};
consumer.setName( "consumer 1" );
producer.start();
consumer.start();
while ( true ) {
Thread.sleep( 100 );
}
}
|
执行结果:
producer 1 产生了一个数字:6773
consumer 1 消费了一个数字:6773
producer 1 产生了一个数字:4456
producer 1 产生了一个数字:8572
producer 1 产生了一个数字:5764
producer 1 产生了一个数字:2874
producer 1 产生了一个数字:780 # 注意这里就已经堵住了,直到有消费者消费一条数据,才能继续生产
consumer 1 消费了一个数字:4456
producer 1 产生了一个数字:4193