收藏|28个R语言绘图的实用程序包!
作者:郑连虎
来源:阿虎定量笔记
本文约2500字,建议阅读20+分钟。
本文为大家介绍了关于R语言绘图方面28个实用程序包。
cartogram
扭曲的地图,以传达统计信息
开发
Sebastian Jeworutzki,[email protected];Timothee Giraud;Nicolas Lambert;Roger Bivand;Edzer Pebesma示例
# 安装并加载包install.packages("maptools")library(maptools)# 绘制非洲边界data(wrld_simpl)afr=wrld_simpl[wrld_simpl$REGION==2]plot(afr)# 安装并加载包install.packages("cartogram")library(cartogram)# 使用2005年的非洲人口数据afr_cartogram <- cartogram(afr, "POP2005", itermax=5)# 反映非洲人口特征plot(afr_cartogram)circlize
圈圈布局、弦图
开发
Zuguang Gu,[email protected]示例
# 安装并加载包install.packages("circlize")library(circlize)# 生成数据name=c(3,10,10,3,6,7,8,3,6,1,2,2,6,10,2,3,3,10,4,5,9,10)feature=paste("feature ", c(1,1,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5) , sep="")dat <- data.frame(name,feature)dat <- with(dat, table(name, feature))# 绘制弦图chordDiagram(as.data.frame(dat), transparency = 0.5)CMplot
圆形曼哈顿图
开发
[email protected]示例
# 安装并加载包install.packages("CMplot")library("CMplot")# 绘图CMplot(gwasResults, plot.type="c", r=1.6, cir.legend=TRUE, outward=TRUE, cir.legend.col="black", cir.chr.h=.1 ,chr.den.col="orange", file="jpg", memo="", dpi=300, chr.labels=seq(1,22))corrgram
相关系数矩阵
开发
Kevin Wright,[email protected]示例
# 安装并加载包install.packages("iterators")install.packages("corrgram")library(iterators)library(corrgram)# 绘制相关系数矩阵图corrgram(mtcars, order=TRUE, lower.panel=panel.shade, upper.panel=panel.pie,text.panel=panel.txt, main="Correlogram of mtcar intercorrelations")corrplot
相关系数矩阵
开发
Taiyun Wei,[email protected];Viliam Simko,[email protected]示例
# 安装并加载包install.packages("corrplot")library(corrplot)# 计算相关系数mycor <- cor(mtcars)# 绘制相关系数矩阵图corrplot.mixed(mycor, upper = "ellipse")dygraphs
时间序列数据的可视化
开发
Dan Vanderkam;JJ Allaire,[email protected];Jonathan Owen;Daniel Gromer;Petr Shevtsov;Benoit Thieurmel示例
# 安装并加载包install.packages("dygraphs")library(dygraphs)# 时间序列data=data.frame( time=c( seq(0,20,0.5), 40), value=runif(42))str(data)dygraph(data)ellipse
椭圆
开发
Duncan Murdoch,[email protected];E. D. Chow示例
# 安装并加载包install.packages("ellipse")library(ellipse)# 绘制相关系数矩阵图data(mtcars)fit <- lm(mpg ~ ., mtcars)plotcorr(summary(fit, correlation = TRUE)$correlation)fmsb
雷达图
开发
Minato [email protected]示例
# 安装并加载包install.packages("fmsb")library(fmsb)# 生成数据data=as.data.frame(matrix( sample( 2:20 , 10 , replace=T) , ncol=10))colnames(data)=c("math" , "english" , "biology" , "music" , "R-coding", "data-viz" , "french" , "physic", "statistic", "sport" )data=rbind(rep(20,10) , rep(0,10) , data)# 雷达图参数设置radarchart(data,axistype=1,pcol=rgb(0.2,0.5,0.5,0.9),pfcol=rgb(0.2,0.5,0.5,0.5), plwd=4, cglcol="grey", cglty=1, axislabcol="grey", caxislabels=seq(0,20,5), cglwd=0.8,vlcex=0.8)forecast
时间序列分析
开发
Rob J Hyndman,[email protected]示例
# 安装并加载包install.packages("forecast")library(forecast)# 使用英国每月死于肺病的人数数据fit<- auto.arima(mdeaths)# 设置置信区间forecast(fit, level=c(80, 95, 99), h=3)# 绘制时间序列趋势图plot(forecast(fit), shadecols="oldstyle")GGally
散点图矩阵
开发
Barret Schloerke,[email protected];Jason Crowley,[email protected];Di Cook,[email protected];Heike Hofmann,[email protected];Hadley Wickham,[email protected];Francois Briatte,[email protected];Moritz Marbach,[email protected];Edwin Thoen,[email protected];Amos Elberg,[email protected];Joseph Larmarange,[email protected]示例
# 安装并加载包install.packages("GGally")library(GGally)# 绘制相关系数矩阵图ggpairs(mtcars, columns = c("mpg", "cyl", "disp"),upper = list(continuous = wrap("cor", size = 10)), lower =list(continuous = "smooth"))ggplot2
丰富的数据可视化
开发
Hadley Wickham,[email protected];Winston Chang,[email protected]示例
# 安装并加载包install.packages("ggplot2")library(ggplot2)# 生成数据variety=rep(LETTERS[1:7], each=40)treatment=rep(c("high","low"),each=20)note=seq(1:280)+sample(1:150, 280, replace=T)data=data.frame(variety, treatment , note)# 绘制箱线图ggplot(data, aes(x=variety, y=note, fill=treatment)) +geom_boxplot()# 生成数据set.seed(345)Sector <- rep(c("S01","S02","S03","S04","S05","S06","S07"),times=7)Year <- as.numeric(rep(c("1950","1960","1970","1980","1990","2000","2010"),each=7))Value <- runif(49, 10, 100)data <- data.frame(Sector,Year,Value)# 绘制区域图ggplot(data, aes(x=Year, y=Value, fill=Sector)) + geom_area()# 安装并加载包install.packages("plotly")install.packages("gapminder")library(plotly)library(gapminder)# 绘制气泡图p <- gapminder %>% filter(year==1977) %>% ggplot( aes(gdpPercap, lifeExp, size = pop, color=continent)) + geom_point() + scale_x_log10() + theme_bw()ggplotly(p)ggridges
叠嶂图(山峦图)
开发
Claus O. Wilke,[email protected]示例
# 安装并加载包install.packages("ggridges")install.packages("ggplot2")library(ggridges)library(ggplot2)# 使用钻石数据head(diamonds)# 绘制叠嶂图ggplot(diamonds, aes(x = price, y = cut, fill = cut)) + geom_density_ridges() + theme_ridges() + theme(legend.position = "none")hexbin
二维直方图
开发
Dan Carr,[email protected];Nicholas Lewin-Koh;Martin Maechler,[email protected];Deepayan Sarkar,[email protected]示例
# 安装并加载包install.packages("hexbin")install.packages("RColorBrewer")library(hexbin)library(RColorBrewer)# 生成数据x <- rnorm(mean=1.5, 5000)y <- rnorm(mean=1.6, 5000)# 绘制二维散点图bin<-hexbin(x, y, xbins=40)my_colors=colorRampPalette(rev(brewer.pal(11,'Spectral')))plot(bin, main="", colramp=my_colors, legend=F)igraph
网络图
示例
# 安装并加载包install.packages("igraph")library(igraph)# 生成数据data=matrix(sample(0:1, 400, replace=TRUE, prob=c(0.8,0.2)), nrow=20)network=graph_from_adjacency_matrix(data , mode='undirected', diag=F )# 输出网络par(mfrow=c(2,2), mar=c(1,1,1,1))plot(network, layout=layout.sphere, main="sphere")lattice
点图、核密度图、直方图、柱状图、箱线图、散点图、带状图、平行箱线图、三维图、散点图矩阵等
开发
Deepayan Sarkar,[email protected]示例
# 安装并加载包install.packages("lattice")library(lattice)# 查看火山数据head(volcano)# 绘制火山的三维等高线图contourplot(volcano)# 绘制火山的三维水平图levelplot(volcano)# 绘制火山的三维线框图wireframe(volcano)# 查看汽车数据head(mtcars)# 绘制箱线图bwplot(mtcars$mpg)# 绘制平行坐标图parallelplot(mtcars[1:3])# 绘制散点图矩阵splom(mtcars[c(1,3,4,5)])# 绘制带状图stripplot(mtcars$mpg~factor(mtcars$cyl))leaflet
交互式地图
开发
Joe Cheng,[email protected];Bhaskar Karambelkar;Yihui Xie;Hadley Wickham;Kenton Russell;Kent Johnson;Barret Schloerke;Vladimir Agafonkin;Brandon Copeland;Joerg Dietrich;Benjamin Becquet;Norkart AS;L. Voogdt;Daniel Montague;Kartena AB;Robert Kajic;Michael Bostock示例
# 安装并加载包install.packages("leaflet")library(leaflet)# 交互式地图m=leaflet()m=addTiles(m)mlikert
李克特量表数据的可视化
开发
Jason Bryer,[email protected];Kimberly [email protected]示例
# 安装并加载包install.packages("likert")library(likert)# 使用PISA量表数据data(pisaitems)items28 <- pisaitems[, substr(names(pisaitems), 1, 5) == "ST24Q"]# 绘制条形图l28 <- likert(items28)summary(l28)plot(l28)maps
地图
开发
Richard A. Becker;Allan R. Wilks;Ray Brownrigg示例
# 安装并加载包install.packages("maps")install.packages("geosphere")library(maps)library(geosphere)# 绘制世界地图map("world")maptools
地图
开发
Roger Bivand,[email protected];Nicholas Lewin-Koh;Edzer Pebesma;Eric Archer;Adrian Baddeley;Nick Bearman;Hans-Jörg Bibiko;Steven Brey;Jonathan Callahan;German Carrillo;Stéphane Dray;David Forrest;Michael Friendly;Patrick Giraudoux;Duncan Golicher;Virgilio Gómez Rubio;Patrick Hausmann;Karl Ove Hufthammer;Thomas Jagger;Kent Johnson;Sebastian Luque;Don MacQueen;Andrew Niccolai;Edzer Pebesma;Oscar Perpiñán Lamigueiro;Tom Short;Greg Snow;Ben Stabler;Murray Stokely;Rolf Turner示例
# 安装并加载包install.packages("maptools")library(maptools)# 绘制非洲边界data(wrld_simpl)afr=wrld_simpl[wrld_simpl$REGION==2]plot(afr)performanceAnalytics
绩效指标计算与可视化
开发
Brian G. Peterson,[email protected];Peter Carl示例
# 安装并加载包install.packages("PerformanceAnalytics")library(PerformanceAnalytics)# 列出待计算变量mydata <-mtcars[c('mpg','cyl','disp','hp','drat')]# 绘制相关系数矩阵图chart.Correlation(mydata, histogram=TRUE, pch=19)plotly
交互式可视化
开发
Carson Siever,[email protected];Chris Parmer,[email protected];Toby Hocking,[email protected];Scott Chamberlain,[email protected];Karthik Ram,[email protected];Marianne Corvellec,[email protected];Pedro Despouy,[email protected]示例
# 安装并加载包install.packages("plotly")library(plotly)# 查看火山数据head(volcano)# 绘制火山的三维交互图p=plot_ly(z = volcano, type = "surface")pqcc
统计质量控制
开发
Luca Scrucca,[email protected];Greg Snow,[email protected];Peter Bloomfield,[email protected]示例
# 安装并加载包install.packages("qcc")library(qcc)# 均值为10的序列,加上白噪声x <- rep(10, 100) + rnorm(100)# 测试序列,均值为11new.x <- rep(11, 15) + rnorm(15)# 标记出新的点qcc(x, newdata=new.x, type="xbar.one")qqman
曼哈顿图
开发
Stephen Turner示例
# 安装并加载包install.packages("qqman")library(qqman)# 使用gwasResults数据绘制曼哈顿图manhattan(gwasResults, chr="CHR", bp="BP", snp="SNP", p="P" )REmap
地图
开发
Dawei Lang,[email protected]示例
# 安装并加载包install.packages("devtools")install_github("lchiffon/REmap")library(devtools)library(REmap)# 标注起始点origin<-c("济南","西安","成都")destination<-c("西安","成都","济南")# 制作迁徙地图dat = data.frame(origin,destination)out = remap(dat,title = "after-graduation trip ",subtitle= "zg434")plot(out)scatterplot3d
三维散点图
开发
Uwe Ligges,[email protected];Martin Maechler;Sarah Schnackenberg示例
# 安装并加载包install.packages("scatterplot3d")library(scatterplot3d)# 生成数据x1=round(rnorm(100,mean=80,sd=1))x2=round(rnorm(100,mean=80,sd=5))x3=round(rnorm(100,mean=80,sd=10))x=data.frame(x1,x2,x3)# 绘制三维散点图scatterplot3d(x[1:3])TeachingDemos
脸谱图
;
开发
Greg Snow,[email protected]示例
# 安装并加载包install.packages("TeachingDemos")library(TeachingDemos)# 生成数据x1=round(rnorm(100,mean=80,sd=1))x2=round(rnorm(100,mean=80,sd=5))x3=round(rnorm(100,mean=80,sd=10))x=data.frame(x1,x2,x3)# 绘制脸谱图faces(x)treemap
树图
开发
Martijn Tennekes,[email protected]示例
# 安装并加载包install.packages("treemap")library(treemap)# 生成数据group=c("group-1","group-2","group-3")value=c(13,5,22)data=data.frame(group,value)# 绘制树图treemap(data, index="group", vSize="value", type="index")vioplot
小提琴图
开发
Daniel Adler,[email protected];Romain Francois,[email protected]示例
# 安装并加载包install.packages("vioplot")library(vioplot)# 生成数据treatment=c(rep("A", 40) , rep("B", 40) , rep("C", 40) )value=c( sample(2:5, 40 , replace=T) , sample(c(1:5,12:17), 40 , replace=T), sample(1:7, 40 , replace=T) )data=data.frame(treatment,value)# 绘制小提琴图with(data , vioplot( value[treatment=="A"] , value[treatment=="B"], value[treatment=="C"], col=rgb(0.1,0.4,0.7,0.7) , names=c("A","B","C") ))相关推荐
GigibondBaby 2020-09-21
大史哥哥 2020-07-26
json0000 2020-07-26
CYJ0go 2020-07-17
佛系程序员J 2020-06-18
json0000 2020-06-10
M守护神 2020-06-10
M守护神 2020-06-09
playoffs 2020-06-02
不系之舟讨论群0 2020-06-01
天空windy 2020-05-28
wbingyang 2020-05-16
天空windy 2020-05-15
json0000 2020-05-15
M守护神 2020-04-20
NVEFLY 2020-04-19
天空windy 2020-04-19
json0000 2020-03-14