不容错过的Pandas小技巧:万能转格式、轻松合并、压缩数据

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

数据分析,如何能错过 Pandas 。

现在,数据科学家 Roman Orac 分享了他在工作中相见恨晚的 Pandas 使用技巧。

了解了这些技巧,能让你在学习、使用 Pandas 的时候更加高效。

话不多说,一起学习一下~

Pandas实用技巧

用 Pandas 做数据分析,最大的亮点当属 DataFrame。不过,在展示成果的时候,常常需要把 DataFrame 转成另一种格式。

Pandas 在这一点上其实十分友好,只需添加一行代码。

DataFrame 转 HTML

如果你需要用 HTML 发送自动报告,那么 to_html 函数了解一下。

比如,我们先设定这样一个 DataFrame:

import numpy as np 

import pandas as pd 

import random 
 
n = 10 
df = pd.DataFrame( 
    { 
        "col1": np.random.random_sample(n), 
        "col2": np.random.random_sample(n), 
        "col3": [[random.randint(0, 10) for _ in range(random.randint(3, 5))] for _ in range(n)], 
    } 
) 

用上 to_html,就可以将表格转入 html 文件:

df_html = df.to_html() 
with open(‘analysis.html’, ‘w’) as f: f.write(df_html) 

与之配套的,是 read_html 函数,可以将 HTML 转回 DataFrame。

DataFrame 转 LaTeX

如果你还没用过 LaTeX 写论文,强烈建议尝试一下。

要把 DataFrame 值转成 LaTeX 表格,也是一个函数就搞定了:

df.to_latex() 

DataFrame 转 Markdown

如果你想把代码放到 GitHub 上,需要写个 README。

这时候,你可能需要把 DataFrame 转成 Markdown 格式。

Pandas 同样为你考虑到了这一点:

print(df.to_markdown()) 

注:这里还需要 tabulate 库

DataFrame 转 Excel

说到这里,给同学们提一个小问题:导师/老板/客户要你提供 Excel 格式的数据,你该怎么做?

当然是——

df.to_excel(‘analysis.xlsx’) 

需要注意的是,如果你没有安装过 xlwt 和 openpyxl 这两个工具包,需要先安装一下。

另外,跟 HTML 一样,这里也有一个配套函数:read_excel,用来将excel数据导入pandas DataFrame。

DataFrame 转字符串

转成字符串,当然也没问题:

df.to_string() 

5个鲜为人知的Pandas技巧

此前,Roman Orac 还曾分享过 5 个他觉得十分好用,但大家可能没有那么熟悉的 Pandas 技巧。

1、data_range

从外部 API 或数据库获取数据时,需要多次指定时间范围。

Pandas 的 data_range 覆盖了这一需求。

import pandas as pd 
date_from = “2019-01-01” 
date_to = “2019-01-12” 
date_range = pd.date_range(date_from, date_to, freq=”D”) 
print(date_range) 

freq = “D”/“M”/“Y”,该函数就会分别返回按天、月、年递增的日期。

2、合并数据

当你有一个名为left的DataFrame:

和名为right的DataFrame:

想通过关键字“key”把它们整合到一起:

实现的代码是:

df_merge = left.merge(right, on = ‘key’, how = ‘left’, indicator = True) 

3、最近合并(Nearest merge)

在处理股票或者加密货币这样的财务数据时,价格会随着实际交易变化。

针对这样的数据,Pandas提供了一个好用的功能,merge_asof

该功能可以通过最近的key(比如时间戳)合并DataFrame。

举个例子,你有一个存储报价信息的DataFrame。

还有一个存储交易信息的DataFrame。

现在,你需要把两个DataFrame中对应的信息合并起来。

最新报价和交易之间可能有10毫秒的延迟,或者没有报价,在进行合并时,就可以用上 merge_asof。

pd.merge_asof(trades, quotes, on=”timestamp”, by=’ticker’, tolerance=pd.Timedelta(‘10ms’), direction=‘backward’) 

4、创建Excel报告

在Pandas中,可以直接用DataFrame创建Excel报告。

import numpy as np 

import pandas as pd 
 
df = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), columns=["a", "b", "c"]) 
 
report_name = 'example_report.xlsx' 
sheet_name = 'Sheet1' 
writer = pd.ExcelWriter(report_name, engine='xlsxwriter') 
df.to_excel(writer, sheet_name=sheet_name, index=False) 

不只是数据,还可以添加图表。

# define the workbook 
workbook = writer.book 
worksheet = writer.sheets[sheet_name] 
# create a chart line object 
chart = workbook.add_chart({'type': 'line'}) 
# configure the series of the chart from the spreadsheet 
# using a list of values instead of category/value formulas: 
#     [sheetname, first_row, first_col, last_row, last_col] 
chart.add_series({ 
    'categories': [sheet_name, 1, 0, 3, 0], 
    'values':     [sheet_name, 1, 1, 3, 1], 
}) 
# configure the chart axes 
chart.set_x_axis({'name': 'Index', 'position_axis': 'on_tick'}) 
chart.set_y_axis({'name': 'Value', 'major_gridlines': {'visible': False}}) 
# place the chart on the worksheet 
worksheet.insert_chart('E2', chart) 
# output the excel file 
writer.save() 

注:这里需要 XlsxWriter 库

5、节省磁盘空间

Pandas在保存数据集时,可以对其进行压缩,其后以压缩格式进行读取。

先搞一个 300MB 的 DataFrame,把它存成 csv。

df = pd.DataFrame(pd.np.random.randn(50000,300)) 
df.to_csv(‘random_data.csv’, index=False) 

压缩一下试试:

df.to_csv(‘random_data.gz’, compression=’gzip’, index=False) 

文件就变成了136MB。

gzip压缩文件可以直接读取:

df = pd.read_csv(‘random_data.gz’) 

相关推荐