TensorFlow基于Lenet模型手写数字识别
手写识别较为简单的版本应该是只用FC,这样参考这篇博客.
Lenet-5模型:
本文卷积模型:
forward:
#coding:utf-8 import tensorflow as tf import numpy as np IMAGE_SIZE = 28 NUM_CHANNELS = 1 CONV1_SIZE = 5 CONV1_KERNEL_NUM = 32 CONV2_SIZE = 5 CONV2_KERNEL_NUM =64 FC_SIZE = 512 OUTPUT_NODE = 10 def get_weight(shape,regularizer): #产生截断正态分布随机数,取值范围为 [ mean - 2 * stddev, mean + 2 * stddev ] # (mean=0 stddev=1)。 w = tf.Variable(tf.truncated_normal(shape,stddev=0.1)) #tf.add_to_collection(‘list_name’, element): #将元素element添加到列表list_name中 #regularizer 是L2正则化乘上的系数,加入到losses列表中 if regularizer != None:tf.add_to_collection(‘losses‘,tf.contrib.layers.l2_regularizer(regularizer)(w)) return w def get_bias(shape): b = tf.Variable(tf.zeros(shape)) return b #x输入描述,[batch,行分辨率,列分辨率,通道数] #w卷积核描述,[行分辨率,列分辨率,通道数,核个数] #核滑动步长,左右默认填1 def conv2d(x,w): return tf.nn.conv2d(x,w,strides=[1,1,1,1],padding=‘SAME‘) def max_pool_2x2(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding=‘SAME‘) def forward(x,train,regularizer): conv1_w = get_weight([CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_KERNEL_NUM], regularizer) # 初始化卷积核 conv1_b = get_bias([CONV1_KERNEL_NUM]) # 初始化偏置项 conv1 = conv2d(x, conv1_w) # 实现卷积运算 relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_b)) pool1 = max_pool_2x2(relu1) # 将激活后的输出进行最大池化 print("pool1‘size: ",pool1.get_shape()) conv2_w = get_weight([CONV2_SIZE, CONV2_SIZE, CONV1_KERNEL_NUM, CONV2_KERNEL_NUM], regularizer) conv2_b = get_bias([CONV2_KERNEL_NUM]) conv2 = conv2d(pool1, conv2_w) relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_b)) pool2 = max_pool_2x2(relu2) #a.get_shape()中a的数据类型只能是tensor,且返回的是一个元组。 pool_shape = pool2.get_shape().as_list() nodes = pool_shape[1]*pool_shape[2]*pool_shape[3] reshaped = tf.reshape(pool2,[pool_shape[0],nodes]) # 全连接层 fc1_w = get_weight([nodes,FC_SIZE],regularizer) fc1_b = get_bias([FC_SIZE]) fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_w)+fc1_b) # 如果是训练阶段, # 则对该层输出使用 dropout,也就是随机的将该层输出中的一半神经元置为无效, # 是为了避免过拟合而设置的,一般只在全连接层中使用 if train:fc1 = tf.nn.dropout(fc1,0.5) fc2_w = get_weight([FC_SIZE,OUTPUT_NODE],regularizer) fc2_b = get_bias([OUTPUT_NODE]) y = tf.matmul(fc1,fc2_w)+fc2_b return y
backward:
#coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os import numpy as np import forward # 定义训练过程中的超参数 BATCH_SIZE = 100 # 一个 batch 的数量 LEARNING_RATE_BASE = 0.005 # 初始学习率 LEARNING_RATE_DECAY = 0.99 # 学习率的衰减率 GEGULARIZER = 0.0001 # 正则化项的权重 STEPS = 50000 # 最大迭代次数 MOVING_AVERAGE_DECAY = 0.99 # 滑动平均的衰减率 MODEL_SAVE_PATH="./model/" # 保存模型的路径 MODEL_NAME="mnist_model" # 模型命名 def backward(mnist): #x, y_是定义的占位符,需要指定参数的类型,维度(要和网络的输入与输出维度一致),类似 # 于函数的形参,运行时必须传入值 x = tf.placeholder(tf.float32,[ BATCH_SIZE, forward.IMAGE_SIZE, forward.IMAGE_SIZE, forward.NUM_CHANNELS ]) y_ = tf.placeholder(tf.float32,[None,forward.OUTPUT_NODE]) y = forward.forward(x,True,GEGULARIZER) global_step = tf.Variable(0,trainable=False) #logits 为神经网络最后的输出,大小为[batch_size,output] # 参数labels表示实际标签值,大小为[batch_size,output] #第一步对网络最后输出做softmax,再将概率向量与实际标签向量做交叉熵 ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1)) cem = tf.reduce_mean(ce) loss = cem + tf.add_n(tf.get_collection(‘losses‘)) # 加上w的损失 learning_rate = tf.train.exponential_decay( LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY, staircase=True) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # 学习的滑动平均 ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) ema_op = ema.apply(tf.trainable_variables()) with tf.control_dependencies([train_step, ema_op]): train_op = tf.no_op(name=‘train‘) saver = tf.train.Saver() # 实例化saver对象 with tf.Session() as sess: init_op = tf.initialize_all_variables() sess.run(init_op) # 执行训练过程 ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) for i in range(STEPS): xs, ys = mnist.train.next_batch(BATCH_SIZE) reshaped_xs = np.reshape(xs,( BATCH_SIZE, forward.IMAGE_SIZE, forward.IMAGE_SIZE, forward.NUM_CHANNELS )) # 喂入训练图像和标签,开始训练 _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys}) if i % 100 == 0: print("After %d step(s),loss on all data is %g" % (step, loss_value)) saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step) def main(): mnist = input_data.read_data_sets("./data/", one_hot=True) backward(mnist) if __name__ == ‘__main__‘: main()
结果展示:
相关推荐
strint 2019-07-02
zk0 2017-12-14
诗蕊 2018-11-22
sallyyoungsh 2018-10-09
ibelieveican0 2018-08-19