SKR!拥有17年开发经验的CTO总结的大数据学习路线图就是不一样
目前,全球数据呈现爆发增长、海量集聚的特点。国家大力推动实施大数据发展战略,推进数据资源整合和开放共享,加快建设数字中国。大数据行业政策环境良好,发展机遇空前。
但随着国家的重视,企业的转型,对大数据技术人才的要求也是越来越高,不是掌握一点皮毛就能就业了。毕竟现在的竞争压力还是很大的,企业的择优录取、学历、经验的缺乏等种种限制,对想要入行大数据的小伙伴都提出了超高的技术要求,想要弥补自身的不足,就要用自己的长板来弥补短板!
大数据学习路线图——让自己系统学习,知道每一个阶段的学习内容
阶段一、大数据基础——java语言基础方面
(1)Java语言基础
Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类
(2) HTML、CSS与JavaScript
PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生JavaScript交互功能开发、Ajax异步交互、jQuery应用
(3)JavaWeb和数据库
数据库、JavaWeb开发核心、JavaWeb开发内幕
此阶段是针对没有编程基础,或者对基础不扎实的同学一次补习,这个很重要,就像建一座大厦,这就是地基,地基不稳,就算修再高,总有一天会轰然倒塌!
阶段二、 Linux&Hadoop生态体系
Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架
这章是基础课程,帮大家进入大数据领域打好 Linux基础,以便更好地学习Hadoop、hbase、NoSQL、Spark、Storm、docker、 kvm、openstack等众多课程。因为企业中无一例外的是使用 Linux来搭建或部署项目。
Hadoop生态系统的课程,对HDFS体系结构和shell以及java操作详细剖析,从知晓原理到开发网盘的项目,让大家打好学习大数据的基础。详细讲解 Mapreduce, Mapreduce可以说是任何一家大数据公司都会用到的计算框架,也是每个大数据工程师应该熟练掌握的。Hadoop2x集群搭建前面带领大家开发了大量的 MapReduce程序。
阶段三、 分布式计算框架和Spark&Strom生态体系
(1)分布式计算框架
Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网(www.sina.com.cn)
(2)storm技术架构体系
Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战
Spark大数据处理本部分内容全面涵盖了 Spark生态系统的概述及其编程模型,深入内核的研究,。不仅面向项目开发人员,甚至对于研究 Spark的学员,此部分都是非常有学习指引意义的课程
阶段四、 大数据项目实战(一线公司真实项目)
数据获取、数据处理、数据分析、数据展现、数据应用
项目练习其实是穿插课程其中的,在讲解大数据理论的同时,将实践知识穿插其中,增加学生对大数据技术的理解和应用。
阶段五、 大数据分析 —AI(人工智能)
Data Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习
- Python机器学习2、图像识别&神经网络、自然语言处理&社交网络处理、实战项目:户外设备识别分析
此阶段是深入提升阶段,为学生想转行人工智能打下良好的基础,多重技能,更能大大提升就业质量。
学习大数据之路还是很艰辛的,需要加倍努力的,一定切勿急躁,持之以恒才能胜利!
学习资料领取:
1、转发评论 私信回复 大数据
2、点击了解更多获得