阿里巴巴开源项目:分布式数据库同步系统otter(解决中美异地机房)
项目背景
阿里巴巴B2B公司,因为业务的特性,卖家主要集中在国内,买家主要集中在国外,所以衍生出了杭州和美国异地机房的需求,同时为了提升用户体验,整个机房的架构为双A,两边均可写,由此诞生了otter这样一个产品。
otter第一版本可追溯到04~05年,此次外部开源的版本为第4版,开发时间从2011年7月份一直持续到现在,目前阿里巴巴B2B内部的本地/异地机房的同步需求基本全上了otte4。
目前同步规模:
同步数据量6亿
文件同步1.5TB(2000w张图片)
涉及200+个数据库实例之间的同步
80+台机器的集群规模
项目介绍
名称:otter['ɒtə(r)]
译意:水獭,数据搬运工
语言:纯java开发
定位:基于数据库增量日志解析,准实时同步到本机房或跨机房的mysql/oracle数据库.
工作原理
原理描述:
1.基于Canal开源产品,获取数据库增量日志数据。什么是Canal,请点击
2.典型管理系统架构,manager(web管理)+node(工作节点)
a.manager运行时推送同步配置到node节点
b.node节点将同步状态反馈到manager上
3.基于zookeeper,解决分布式状态调度的,允许多node节点之间协同工作.
什么是canal?
otter之前开源的一个子项目,开源链接地址:http://github.com/alibaba/canal
otter能解决什么?
1.异构库同步
a.mysql->mysql/oracle.(目前开源版本只支持mysql增量,目标库可以是mysql或者oracle,取决于canal的功能)
2.单机房同步(数据库之间RTT<1ms)
a.数据库版本升级
b.数据表迁移
c.异步二级索引
3.跨机房同步(比如阿里巴巴国际站就是杭州和美国机房的数据库同不,RTT>200ms,亮点)
a.机房容灾
4.双向同步
a.避免回环算法(通用的解决方案,支持大部分关系型数据库)
b.数据一致性算法(保证双A机房模式下,数据保证最终一致性,亮点)
5.文件同步
a.站点镜像(进行数据复制的同时,复制关联的图片,比如复制产品数据,同时复制产品图片).
单机房复制示意图:
说明:
a.数据on-Fly,尽可能不落地,更快的进行数据同步.(开启nodeloadBalancer算法,如果Node节点S+ETL落在不同的Node上,数据会有个网络传输过程)
b.node节点可以有failover/loadBalancer.
跨机房复制示意图:
说明:
a.数据涉及网络传输,S/E/T/L几个阶段会分散在2个或者更多Node节点上,多个Node之间通过zookeeper进行协同工作(一般是Select和Extract在一个机房的Node,Transform/Load落在另一个机房的Node)
b.node节点可以有failover/loadBalancer.(每个机房的Node节点,都可以是集群,一台或者多台机器)
相关名词解释
otter核心model关系图
名词解释
Pipeline:从源端到目标端的整个过程描述,主要由一些同步映射过程组成
Channel:同步通道,单向同步中一个Pipeline组成,在双向同步中有两个Pipeline组成
DateMediaPair:根据业务表定义映射关系,比如源表和目标表,字段映射,字段组等
DateMedia:抽象的数据介质概念,可以理解为数据表/mq队列定义
DateMediaSource:抽象的数据介质源信息,补充描述DateMedia
ColumnPair:定义字段映射关系
ColumnGroup:定义字段映射组
Node:处理同步过程的工作节点,对应一个jvm
otter的S/E/T/Lstage阶段模型
说明:为了更好的支持系统的扩展性和灵活性,将整个同步流程抽象为Select/Extract/Transform/Load,这么4个阶段.
Select阶段:为解决数据来源的差异性,比如接入canal获取增量数据,也可以接入其他系统获取其他数据等。
Extract/Transform/Load阶段:类似于数据仓库的ETL模型,具体可为数据join,数据转化,数据Load的
相关实现介绍
Otter调度模型
Otter数据入库算法
Otter双向回环控制
Otter数据一致性
Otter高可用性
Otter扩展性
QuickStart
Seethepageforquickstart:QuickStart.
AdminGuide
Seethepageforadmindeployguide:AdminGuide