Javascript之常见算法整理(持续更新)
一、排序
冒泡排序
//冒泡排序 function bubbleSort(arr) { for(var i = 1, len = arr.length; i < len - 1; ++i) { for(var j = 0; j <= len - i; ++j) { if (arr[j] > arr[j + 1]) { let temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } } } }
插入排序
//插入排序 过程就像你拿到一副扑克牌然后对它排序一样 function insertionSort(arr) { var n = arr.length; // 我们认为arr[0]已经被排序,所以i从1开始 for (var i = 1; i < n; i++) { // 取出下一个新元素,在已排序的元素序列中从后向前扫描来与该新元素比较大小 for (var j = i - 1; j >= 0; j--) { if (arr[i] >= arr[j]) { // 若要从大到小排序,则将该行改为if (arr[i] <= arr[j])即可 // 如果新元素arr[i] 大于等于 已排序的元素序列的arr[j], // 则将arr[i]插入到arr[j]的下一位置,保持序列从小到大的顺序 arr.splice(j + 1, 0, arr.splice(i, 1)[0]); // 由于序列是从小到大并从后向前扫描的,所以不必再比较下标小于j的值比arr[j]小的值,退出循环 break; } else if (j === 0) { // arr[j]比已排序序列的元素都要小,将它插入到序列最前面 arr.splice(j, 0, arr.splice(i, 1)[0]); } } } return arr; }
当目标是升序排序,最好情况是序列本来已经是升序排序,那么只需比较
n-1
次,时间复杂度O(n)
。最坏情况是序列本来是降序排序,那么需比较n(n-1)/2
次,时间复杂度O(n^2)
。所以平均来说,插入排序的时间复杂度是O(n^2)
。显然,次方级别的时间复杂度代表着插入排序不适合数据特别多的情况,一般来说插入排序适合小数据量的排序。快速排序
//快速排序 function qSort(arr) { //声明并初始化左边的数组和右边的数组 var left = [], right = []; //使用数组第一个元素作为基准值 var base = arr[0]; //当数组长度只有1或者为空时,直接返回数组,不需要排序 if(arr.length <= 1) return arr; //进行遍历 for(var i = 1, len = arr.length; i < len; i++) { if(arr[i] <= base) { //如果小于基准值,push到左边的数组 left.push(arr[i]); } else { //如果大于基准值,push到右边的数组 right.push(arr[i]); } } //递归并且合并数组元素 return [...qSort(left), ...[base], ...qSort(right)]; //return qSort(left).concat([base], qSort(right)); }
二、字符串
回文字符串
//判断回文字符串 function palindrome(str) { var reg = /[\W\_]/g; var str0 = str.toLowerCase().replace(reg, ""); var str1 = str0.split("").reverse().join(""); return str0 === str1; }
翻转字符串
function reverseString(str) { return str.split("").reverse().join(""); }
字符串中出现最多次数的字符
function findMaxDuplicateChar(str) { var cnt = {}, //用来记录所有的字符的出现频次 c = ''; //用来记录最大频次的字符 for (var i = 0; i < str.length; i++) { var ci = str[i]; if (!cnt[ci]) { cnt[ci] = 1; } else { cnt[ci]++; } if (c == '' || cnt[ci] > cnt[c]) { c = ci; } } console.log(cnt) return c; }
三、数组
数组去重
//数组去重 function uniqueArray(arr) { var temp = []; for (var i = 0; i < arr.length; i++) { if (temp.indexOf(arr[i]) == -1) { temp.push(arr[i]); } } return temp; //or return Array.from(new Set(arr)); }
四、查找
二分查找
//二分查找 function binary_search(arr, l, r, v) { if (l > r) { return -1; } var m = parseInt((l + r) / 2); if (arr[m] == v) { return m; } else if (arr[m] < v) { return binary_search(arr, m+1, r, v); } else { return binary_search(arr, l, m-1, v); } }
将二分查找运用到之前的插入排序中,形成二分插入排序,据说可以提高效率。但我测试的时候也许是数据量太少,并没有发现太明显的差距。。大家可以自己试验一下~(譬如在函数调用开始和结束使用
console.time('插入排序耗时')
和console.timeEnd('插入排序耗时')
)
五、树的搜索/遍历
深度优先搜索
//深搜 非递归实现 function dfs(node) { var nodeList = []; if (node) { var stack = []; stack.push(node); while(stack.length != 0) { var item = stack.pop(); nodeList.push(item); var children = item.children; for (var i = children.length-1; i >= 0; i--) { stack.push(children[i]); } } } return nodeList; } //深搜 递归实现 function dfs(node, nodeList) { if (node) { nodeList.push(node); var children = node.children; for (var i = 0; i < children.length; i++) { dfs(children[i], nodeList); } } return nodeList; }
广度优先搜索
//广搜 非递归实现 function bfs(node) { var nodeList = []; if (node != null) { var queue = []; queue.unshift(node); while (queue.length != 0) { var item = queue.shift(); nodeList.push(item); var children = item.children; for (var i = 0; i < children.length; i++) queue.push(children[i]); } } return nodeList; } //广搜 递归实现 var i=0; //自增标识符 function bfs(node, nodeList) { if (node) { nodeList.push(node); if (nodeList.length > 1) { bfs(node.nextElementSibling, nodeList); //搜索当前元素的下一个兄弟元素 } node = nodeList[i++]; bfs(node.firstElementChild, nodeList); //该层元素节点遍历完了,去找下一层的节点遍历 } return nodeList; }
广搜的递归版本我需要使用到函数体外的变量
i
,不知道大家有没有更好的方法,恳请赐教~
持续更新中~~~
相关推荐
randy0 2020-11-17
lixiaotao 2020-10-07
美丽的泡沫 2020-09-08
nongfusanquan0 2020-08-18
hang0 2020-08-16
earthhouge 2020-08-15
算法改变人生 2020-07-28
troysps 2020-07-19
Broadview 2020-07-19
chenfei0 2020-07-18
风吹夏天 2020-07-07
yangjingdong00 2020-07-05
数据与算法之美 2020-07-05
shawsun 2020-07-04
数据与算法之美 2020-07-04
要知道时间复杂度只是描述一个增长趋势,复杂度为O的排序算法执行时间不一定比复杂度为O长,因为在计算O时省略了系数、常数、低阶。实际上,在对小规模数据进行排序时,n2的值实际比 knlogn+c还要小。
Evankaka 2020-07-04
田有朋 2020-06-28