Python+OpenCV拉普拉斯图像锐化

**Python实现基于OpenCV的拉普拉斯图像锐化**

1

研一学习数字图像处理(刚萨雷斯版),导师让我用Python编写基于拉普拉斯算子的图像锐化,并且是在不直接调用OpenCV的情况下,由于现在还没有学习锐化彩色图像,所以本博客先联系锐化灰度图。

Python代码如下:

import cv2 as cv

import numpy as np

rgb = cv.imread("D:/a.jpg")

weight=rgb.shape[0]

height=rgb.shape[1]

number=rgb.shape[2]

print("原图像大小:""weight: %d height: %d number: %d" %(weight,height,number)) # 检查图像大小

img=cv.resize(rgb,(int(weight/6),int(height/6)),interpolation=cv.INTER_CUBIC) # 将图像缩小为原来的六分之一倍

grayimg=np.zeros((img.shape[0],img.shape[1],1),np.uint8)

weight=int(weight/6)

height=int(height/6)

print("裁剪后图像大小:""weight: %d height: %d number: %d" %(weight,height,number))

for i in range(weight):

for j in range(height):

grayimg[i,j] = 0.299 * img[i, j, 0] + 0.587 * img[i, j, 1] + 0.114 * img[i, j, 2] # 将原图片转为灰度图片

t1 = list([[0,1,0],

[1,-4,1],

[0,1,0]]) # 定义拉普拉斯滤波器

shp=grayimg*1 # 设置一个新的图片变量,防止修改原图片

shp=np.pad(grayimg,((1, 1), (1, 1),(0,0)),"constant",constant_values=0) # 为原图片加一层边缘

for i in range(1,weight-1):

for j in range(1,height-1):

shp[i,j]=abs(np.sum(shp[i:i+3,j:j+3]*t1)) # 对灰度图进行锐化

cv.imshow('srcImage', img)

cv.imshow('grayImage', grayimg)

cv.imshow("Laplacian",grayimg+shp[1:shp.shape[0]-1,1:shp.shape[1]-1])

cv.waitKey(0)

cv.destroyAllWindow()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

写着玩,只想记录自己在Python和图像处理的成长。

Python+OpenCV拉普拉斯图像锐化