机器学习推荐论文和书籍

转自http://blog.csdn.net/chl033/article/details/4822922

好好地学习吧。。

发信人:zibuyu(得之我幸),信区:NLP

标题:机器学习推荐论文和书籍

发信站:水木社区(ThuOct3021:00:392008),站内

我们组内某小神童师弟通读论文,拟了一个机器学习的推荐论文和书籍列表。

经授权发布在这儿,希望对大家有用。:)

======================================

基本模型:

HMM(HiddenMarkovModels):

ATutorialonHiddenMarkovModelsandSelectedApplicationsin

SpeechRecognition.pdf

ME(MaximumEntropy):

ME_to_NLP.pdf

MEMM(MaximumEntropyMarkovModels):

memm.pdf

CRF(ConditionalRandomFields):

AnIntroductiontoConditionalRandomFieldsforRelationalLearning.pdf

ConditionalRandomFields:ProbabilisticModelsforSegmentingand

LabelingSequenceData.pdf

SVM(supportvectormachine):

*张学工<<统计学习理论>>

LSA(orLSI)(LatentSemanticAnalysis):

Latentsemanticanalysis.pdf

pLSA(orpLSI)(ProbablisticLatentSemanticAnalysis):

ProbabilisticLatentSemanticAnalysis.pdf

LDA(LatentDirichletAllocation):

LatentDirichletAllocaton.pdf(用variationaltheory+EM算法解模型)

Parameterestimationfortextanalysis.pdf(usingGibbsSampling解模)

NeuralNetworksi(includingHopfieldModel&self-organizingmaps&

Stochasticnetworks&BoltzmannMachineetc.):

NeuralNetworks-ASystematicIntroduction

DiffusionNetworks:

DiffusionNetworks,ProductsofExperts,andFactorAnalysis.pdf

Markovrandomfields:

GeneralizedLinearModel(includinglogisticregressionetc.):

AnintroductiontoGeneralizedLinearModels2nd

ChineseRestrauntModel(DirichletProcesses):

DirichletProcesses,ChineseRestaurantProcessesandallthat.pdf

EstimatingaDirichletDistribution.pdf

=================================================================

Someimportantalgorithms:

EM(ExpectationMaximization):

ExpectationMaximizationandPosteriorConstraints.pdf

MaximumLikelihoodfromIncompleteDataviatheEMAlgorithm.pdf

MCMC(MarkovChainMonteCarlo)&GibbsSampling:

MarkovChainMonteCarloandGibbsSampling.pdf

ExplainingtheGibbsSampler.pdf

AnintroductiontoMCMCforMachineLearning.pdf

PageRank:

矩阵分解算法:

SVD,QR分解,Shur分解,LU分解,谱分解

Boosting(includingAdaboost):

*adaboost_talk.pdf

SpectralClustering:

Tutorialonspectralclustering.pdf

Energy-BasedLearning:

AtutorialonEnergy-basedlearning.pdf

BeliefPropagation:

UnderstandingBeliefPropagationanditsGeneralizations.pdf

bp.pdf

Constructionfreeenergyapproximationandgeneralizedbelief

propagationalgorithms.pdf

LoopyBeliefPropagationforApproximateInferenceAnEmpiricalStudy.pdf

LoopyBeliefPropagation.pdf

AP(affinityPropagation):

L-BFGS:

<<最优化理论与算法2nd>>chapter10

OnthelimitedmemoryBFGSmethodforlargescaleoptimization.pdf

IIS:

IIS.pdf

=================================================================

理论部分:

概率图(probabilisticnetworks):

AnintroductiontoVariationalMethodsforGraphicalModels.pdf

ProbabilisticNetworks

FactorGraphsandtheSum-ProductAlgorithm.pdf

ConstructingFreeEnergyApproximationsandGeneralizedBelief

PropagationAlgorithms.pdf

*GraphicalModels,exponentialfamilies,andvariationalinference.pdf

VariationalTheory(变分理论,我们只用概率图上的变分):

Tutorialonvarationalapproximationmethods.pdf

AvariationalBayesianframeworkforgraphicalmodels.pdf

variationaltutorial.pdf

InformationTheory:

ElementsofInformationTheory2nd.pdf

测度论:

测度论(Halmos).pdf

测度论讲义(严加安).pdf

概率论:

......

<<概率与测度论>>

随机过程:

应用随机过程林元烈2002.pdf

<<随机数学引论>>

MatrixTheory:

矩阵分析与应用.pdf

模式识别:

<<模式识别2nd>>边肇祺

*PatternRecognitionandMachineLearning.pdf

最优化理论:

<>

<<最优化理论与算法>>

泛函分析:

<<泛函分析导论及应用>>

Kernel理论:

<<模式分析的核方法>>

统计学:

......

<<统计手册>>

==========================================================

综合:

semi-supervisedlearning:

<>MITPress

semi-supervisedlearningbasedonGraph.pdf

Co-training:

Self-training:

相关推荐