Python多线程threading

介绍

在Python中,使用多线程multi-threading可以『同时』执行多个任务,比如你需要一个线程来复制读取信息,另一个线程来解析。为什么这里的同时要加引号呢,这是由于Python中GIL,也就是全局锁,看似同时执行多个任务,实际上是分布执行的,只不过各自完成不同的任务会提高工作效率。如果你不了解GIL,请看下图
Python多线程threading

实例教程

实例1

import threading

def job():
    info = "this is an added thread, which is %s" % threading.current_thread
    print(info)

def main():
    print(threading.active_count())
    print(threading.enumerate())
    #print(threading.current_thread())

    # 创建一个Thread对象,让他来复制job任务
    new_thread = threading.Thread(target=job)
    # 执行线程任务
    new_thread.start()
    print(threading.active_count())

if __name__ == '__main__':
    main()

运行结果:

1
[<_MainThread(MainThread, started 140637982934784)>]
this is an added thread, which is <function current_thread at 0x7fe8cd92d378>
2

解释一下:

  1. threading是线程模块,需要导入
  2. threading.active_count()方法会给出所有激活的线程数量
  3. threading.enumerate()方法会列举出存在的每一个线程
  4. threading.current_thread()方法会给出当前正在执行的线程
  5. 使用时需要先创建线程对象,并指定任务(target),然后用start方法来执行

实例2

import threading
import time

def job():
    print('T1 start\n')
    # 让任务延迟一下
    for i in range(10):
        time.sleep(0.1)
    print('T1 finish\n')

def job2():
    print('T2 start\n')
    # 任务不延迟
    print('T2 finish\n')

def main():
    thread1 = threading.Thread(target=job,name='T1')
    thread2 = threading.Thread(target=job2,name='T2')
    thread1.start()
    thread2.start()

    #thread1.join()

    print('all done')

if __name__ == '__main__':
    main()

运行结果:

T1 start

T2 start

T2 finish

all done
T1 finish

会发现all done并不是在最后执行的,怎么办呢?试试把join方法解除封(注)印(释),请看结果:

T1 start

T2 start

T2 finish

T1 finish

all done

解释一下:

  1. 多个线程是交叉进行的
  2. join方法可以用来等待该线程完成任务

实例3

import threading
from queue import Queue
import time

def job(l,q):
    for i in range(len(l)):
        l[i] = l[i]**2

    q.put(l)


def multithreading(data):
    q = Queue()
    threads = []
    THREAD_NUM = 4
    for i in range(THREAD_NUM):
        t = threading.Thread(target=job,args=(data[i],q))
        t.start()
        threads.append(t)
    for t in threads:
        t.join()
    results = []
    for _ in range(THREAD_NUM):
        results.append(q.get())

    print(results)

def unithreading(data):
    for i in range(len(data)):
        l = data[i]
        for j in range(len(l)):
            data[i][j] = data[i][j]**2

    print(data)

if __name__ == '__main__':
    data1 = [[1],[2,3],[4,5,6],[7,8,9,10]]
    data2 = [[1],[2,3],[4,5,6],[7,8,9,10]]
    time1 = time.clock()
    unithreading(data1)
    time2 = time.clock()
    multithreading(data2)
    time3 = time.clock()

    runtime_uni = time2 - time1
    runtime_multi = time3 - time2

    print("Runtime for unithreading is %s seconds." % runtime_uni)
    print("Runtime for multithreading is %s seconds." % runtime_multi)

运行结果:

[[1], [4, 9], [16, 25, 36], [49, 64, 81, 100]]
[[1], [4, 9], [16, 25, 36], [49, 64, 81, 100]]
Runtime for unithreading is 4.300000000000137e-05 seconds.
Runtime for multithreading is 0.001118000000000001 seconds.

解释一下:

  1. 这个例子主要是对比一下单线程是多线程的速度
  2. 这里演示了如何创建多个线程(此处为4个),并且分别执行任务
  3. 因为线程任务本身是没有return的,所以顺便学习一下队列queue的用法,以及put和get方法

实例4

import threading


def job1():
    global A
    #global A,lock
    #lock.acquire()
    for i in range(10):
        A += 1
        print('job1',A)
    #lock.release()

def job2():
    global A
    #global A,lock
    #lock.acquire()
    for i in range(10):
        A += 10
        print('job2',A)
    #lock.release()

if __name__ == '__main__':
    lock = threading.Lock()
    A = 0
    t1 = threading.Thread(target=job1)
    t2 = threading.Thread(target=job2)
    t1.start()
    t2.start()
    t1.join()
    t2.join()

运行结果:

job1job2  111

job1job2  1222

job1job2  2333

job1job2  3444

job1job2  4555

job1job2  5666

job1job2  6777

job1job2  7888

job1job2  8999

job1job2  100110

你会发现这打印得错乱了,这也是多个线程交替工作得原因,如果先想要规定一个线程工作的时候防止别的线程干扰,需要怎么做呢?试试使用lock(注释部分)吧,再运行一下:

job1 1
job1 2
job1 3
job1 4
job1 5
job1 6
job1 7
job1 8
job1 9
job1 10
job2 20
job2 30
job2 40
job2 50
job2 60
job2 70
job2 80
job2 90
job2 100
job2 110

解释一下:

  1. lock可以用来锁住一个线程,放置别的线程干扰它
  2. acquire方法和release方法分别是用来加锁和解锁的

最后

多线程的简单应用就到这里,我们最开始说过由于GIL,Python得多线程并不是真正的去同时执行多个任务,那么有没有办法弥补呢?有,那就是多进程!你一定听说过多核吧,下次再讲:)

相关推荐