如何加速Python列表和字典让你的代码更加高效
介绍
今天,我们将讨论Python中的优化技术。在本文中,您将了解如何通过避免在列表和字典中进行重新计算来加快代码的速度。
我们先编写一个装饰器函数来计算函数的执行时间,方便测验不同代码的速度:
import functools import time def timeit(func): @functools.wraps(func) def newfunc(*args, **kwargs): startTime = time.time() func(*args, **kwargs) elapsedTime = time.time() - startTime print('function - {}, took {} ms to complete'.format(func.__name__, int(elapsedTime * 1000))) return newfunc
避免在列表中重新评估
在循环内
代码:
@timeit def append_inside_loop(limit): nums = [] for num in limit: nums.append(num) append_inside_loop(list(range(1, 9999999)))
在上面的函数中.append每次通过循环重新计算的函数引用。执行后,上述函数所花费的总时间:
o/p - function - append_inside_loop, took 529 ms to complete
在循环外
代码:
@timeit def append_outside_loop(limit): nums = [] append = nums.append for num in limit: append(num) append_outside_loop(list(range(1, 9999999)))
在上面的函数中,我们对nums.append在循环外部估值,并在循环内部使用append为变量。总时间:
o/p - function - append_outside_loop, took 328 ms to complete
如您所见,当我们在for循环外部追加为一个本地变量,这将花费更少的时间,可以将代码加速201 ms。
避免在字典中重新求值
在循环内部
代码:
@timeit def inside_evaluation(limit): data = {} for num in limit: data[num] = data.get(num, 0) + 1 inside_evaluation(list(range(1, 9999999)))
上述函数所花费的总时间:
o/p - function - inside_evaluation, took 1400 ms to complete
在循环外
代码:
@timeit def outside_evaluation(limit): data = {} get = data.get for num in limit: data[num] = get(num, 0) + 1 outside_evaluation(list(range(1, 9999999)))
上述函数所花费的总时间:
相关推荐
坚持是一种品质 2020-11-16
夜斗不是神 2020-11-17
huavhuahua 2020-11-20
Yasin 2020-11-16
xiaoseyihe 2020-11-16
千锋 2020-11-15
diyanpython 2020-11-12
chunjiekid 2020-11-10
wordmhg 2020-11-06
YENCSDN 2020-11-17
lsjweiyi 2020-11-17
houmenghu 2020-11-17
Erick 2020-11-17
HeyShHeyou 2020-11-17
以梦为马不负韶华 2020-10-20
lhtzbj 2020-11-17
pythonjw 2020-11-17
dingwun 2020-11-16