Hadoop之自定义输入数据
默认KeyValueTextInputFormat的数据输入是通过,空格来截取,区分key和value的值,这里我们通过自定义来实现通过 “,”来截取。
一,准备文件数据:
2,自定义MyFileInputFormat类:
import java.io.IOException; import org.apache.Hadoop.io.Text; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.KeyValueLineRecordReader; public class MyFileInputFormat extends FileInputFormat<Text, Text> { @Override public RecordReader<Text, Text> createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { context.setStatus(split.toString()); return new MyLineRecordReader(context.getConfiguration()); } }
3,自定义MyLineRecordReader类,并修改其中的截取方法:
import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.input.LineRecordReader; public class MyLineRecordReader extends RecordReader<Text, Text> { public static final String KEY_VALUE_SEPERATOR = "mapreduce.input.keyvaluelinerecordreader.key.value.separator"; private final LineRecordReader lineRecordReader; private byte separator = (byte) ','; private Text innerValue; private Text key; private Text value; public Class getKeyClass() { return Text.class; } public MyLineRecordReader(Configuration conf) throws IOException { lineRecordReader = new LineRecordReader(); String sepStr = conf.get(KEY_VALUE_SEPERATOR, ","); this.separator = (byte) sepStr.charAt(0); } public void initialize(InputSplit genericSplit, TaskAttemptContext context) throws IOException { lineRecordReader.initialize(genericSplit, context); } public static int findSeparator(byte[] utf, int start, int length, byte sep) { for (int i = start; i < (start + length); i++) { if (utf[i] == sep) { return i; } } return -1; } public static void setKeyValue(Text key, Text value, byte[] line, int lineLen, int pos) { if (pos == -1) { key.set(line, 0, lineLen); value.set(""); } else { key.set(line, 0, pos); value.set(line, pos + 1, lineLen - pos - 1); } } /** Read key/value pair in a line. */ public synchronized boolean nextKeyValue() throws IOException { byte[] line = null; int lineLen = -1; if (lineRecordReader.nextKeyValue()) { innerValue = lineRecordReader.getCurrentValue(); line = innerValue.getBytes(); lineLen = innerValue.getLength(); } else { return false; } if (line == null) return false; if (key == null) { key = new Text(); } if (value == null) { value = new Text(); } int pos = findSeparator(line, 0, lineLen, this.separator); setKeyValue(key, value, line, lineLen, pos); return true; } public Text getCurrentKey() { return key; } public Text getCurrentValue() { return value; } public float getProgress() throws IOException { return lineRecordReader.getProgress(); } public synchronized void close() throws IOException { lineRecordReader.close(); } }
4,测试类的书写:
import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class Test{ public static void main(String[] args) { try { Configuration conf = new Configuration(); String[] paths = new GenericOptionsParser(conf, args).getRemainingArgs(); if(paths.length < 2){ throw new RuntimeException("usage <input> <output>"); } Job job = Job.getInstance(conf, "wordcount2"); job.setJarByClass(Test.class); job.setInputFormatClass(MyFileInputFormat.class); //job.setInputFormatClass(TextInputFormat.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); //job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.addInputPaths(job, paths[0]);//同时写入两个文件的内容 FileOutputFormat.setOutputPath(job, new Path(paths[1] + System.currentTimeMillis()));//整合好结果后输出的位置 System.exit(job.waitForCompletion(true) ? 0 : 1);//执行job } catch (IOException e) { e.printStackTrace(); } catch (ClassNotFoundException e) { e.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } }
5,结果:
下面关于Hadoop的文章您也可能喜欢,不妨看看:
相关推荐
minerd 2020-10-28
changjiang 2020-11-16
WeiHHH 2020-09-23
Aleks 2020-08-19
WeiHHH 2020-08-17
飞鸿踏雪0 2020-07-26
tomli 2020-07-26
deyu 2020-07-21
strongyoung 2020-07-19
eternityzzy 2020-07-19
Elmo 2020-07-19
飞鸿踏雪0 2020-07-09
飞鸿踏雪0 2020-07-04
xieting 2020-07-04
WeiHHH 2020-06-28
genshengxiao 2020-06-26
Hhanwen 2020-06-25