ElasticSearch Recovery 分析

概览

Recovery 其实有两种:

  1. Primary的迁移/Replication的生成和迁移
  2. Primary的恢复

org.elasticsearch.indices.cluster.IndicesClusterStateService.clusterChanged 被触发后,会触发applyNewOrUpdatedShards 函数的调用,这里是我们整个分析的起点。大家可以跑进去看看,然后跟着文章打开对应的源码浏览。

阅读完这篇文章,我们能够得到:

  1. 熟悉整个recovery 流程
  2. 了解translog机制
  3. 掌握对应的代码体系结构

Primary的恢复

这个是一般出现故障集群重启的时候可能遇到的。首先需要从Store里进行恢复。

if (isPeerRecovery(shardRouting)) {
 ......
}
else {
 //走的这个分支
 indexService.shard(shardId).recoverFromStore(shardRouting, 
 new StoreRecoveryService.RecoveryListener() {
}

Primary 进行自我恢复,所以并不需要其他节点的支持。所以判定的函数叫做isPeerRecovery 其实还是挺合适的。

indexService.shard(shardId).recoverFromStore 调用的是 org.elasticsearch.index.shard.IndexShard的方法。

public void recoverFromStore(ShardRouting shard, StoreRecoveryService.RecoveryListener recoveryListener) {
 ......
 final boolean shouldExist = shard.allocatedPostIndexCreate();
 storeRecoveryService.recover(this, shouldExist, recoveryListener);
 }

逻辑还是很清晰的,判断分片必须存在,接着将任务委托给 org.elasticsearch.index.shard.StoreRecoveryService.recover 方法,该方法有个细节需要了解下:

if (indexShard.routingEntry().restoreSource() != null) {
 indexShard.recovering("from snapshot", 
 RecoveryState.Type.SNAPSHOT, 
 indexShard.routingEntry().restoreSource());
 } else {
 indexShard.recovering("from store", 
 RecoveryState.Type.STORE, 
 clusterService.localNode());
 }

ES会根据restoreSource 决定是从SNAPSHOT或者从Store里进行恢复。这里的indexShard.recovering并没有执行真正的recovering 操作,而是返回了一个recover的信息对象,里面包含了譬如节点之类的信息。

之后就将其作为一个任务提交出去了:

threadPool.generic().execute(new Runnable() {
 @Override
 public void run() {
 try {
 final RecoveryState recoveryState = indexShard.recoveryState();
 if (indexShard.routingEntry().restoreSource() != null) {
 restore(indexShard, recoveryState);
 } else { 
 recoverFromStore(indexShard, indexShouldExists, recoveryState);
 }

这里我们只走一条线,也就是进入 recoverFromStore 方法,该方法会执行索引文件的恢复动作,本质上是进入了INDEX Stage.

接着进行TranslogRecovery了

typesToUpdate = indexShard.performTranslogRecovery(indexShouldExists);
indexShard.finalizeRecovery();

继续进入 indexShard.performTranslogRecovery 方法:

public Map<String, Mapping> performTranslogRecovery(boolean indexExists) {
 if (indexExists == false) { 
 final RecoveryState.Translog translogStats = recoveryState().getTranslog();
 translogStats.totalOperations(0);
 translogStats.totalOperationsOnStart(0);
 }
 final Map<String, Mapping> recoveredTypes = internalPerformTranslogRecovery(false, indexExists); 
 return recoveredTypes;
 }

这个方法里面,最核心的是 internalPerformTranslogRecovery方法,进入该方法后先进入 VERIFY_INDEX Stage,进行索引的校验,校验如果没有问题,就会进入我们期待的TRANSLOG 状态了。

进入TRANSLOG 后,先进行一些设置:

engineConfig.setEnableGcDeletes(false);
engineConfig.setCreate(indexExists == false);

这里的GC 指的是tranlog日志的删除问题,也就是不允许删除translog,接着会创建一个新的InternalEngine了,然后返回调用org.elasticsearch.index.shard.TranslogRecoveryPerformer.getRecoveredTypes

不过你看这个代码会比较疑惑,其实我一开始看也觉得纳闷:

if (skipTranslogRecovery == false) { 
 markLastWrite();
 }
 createNewEngine(skipTranslogRecovery, engineConfig);
 return engineConfig.getTranslogRecoveryPerformer().
 getRecoveredTypes();

我们并没有看到做translog replay的地方,而从上层的调用方来看:

typesToUpdate = indexShard.performTranslogRecovery(indexShouldExists);
indexShard.finalizeRecovery();

performTranslogRecovery 返回后,就立马进入扫尾(finalizeRecovery)阶段。 里面唯一的动作是createNewEngine,并且传递了skipTranslogRecovery 参数。 也就说,真正的translog replay动作是在createNewEngine里完成,我们经过探索,发现是在InternalEngine 的初始化过程完成的,具体代码如下:

try {
 if (skipInitialTranslogRecovery) {
 commitIndexWriter(writer,
 translog, 
 lastCommittedSegmentInfos.
 getUserData().
 get(SYNC_COMMIT_ID));
 } else {
 recoverFromTranslog(engineConfig, translogGeneration);
 }
 } catch (IOException | EngineException ex) {
 .......
 }

里面有个recoverFromTranslog,我们进去瞅瞅:

final TranslogRecoveryPerformer handler = engineConfig.getTranslogRecoveryPerformer();
 try (Translog.Snapshot snapshot = translog.newSnapshot()) {
 opsRecovered = handler.recoveryFromSnapshot(this, snapshot);
 } catch (Throwable e) {
 throw new EngineException(shardId, "failed to recover from translog", e);
 }

目前来看,所有的Translog recovery 动作其实都是由 TranslogRecoveryPerformer 来完成的。当然这个名字也比较好,翻译过来就是 TranslogRecovery 执行者。先对translog 做一个snapshot,然后根据这个snapshot开始进行恢复,进入 recoveryFromSnapshot 方法我们查看细节,然后会引导你进入
下面的方法:

public void performRecoveryOperation(Engine engine, Translog.Operation operation, boolean allowMappingUpdates) {
 try {
 switch (operation.opType()) {
 case CREATE:
 Translog.Create create = (Translog.Create) operation;
 Engine.Create engineCreate = IndexShard.prepareCreate(docMapper(create.type()),
 source(create.source()).index(shardId.getIndex()).type(create.type()).id(create.id())
 .routing(create.routing()).parent(create.parent()).timestamp(create.timestamp()).ttl(create.ttl()),
 create.version(), create.versionType().versionTypeForReplicationAndRecovery(), Engine.Operation.Origin.RECOVERY, true, false);
 maybeAddMappingUpdate(engineCreate.type(), engineCreate.parsedDoc().dynamicMappingsUpdate(), engineCreate.id(), allowMappingUpdates);
 if (logger.isTraceEnabled()) {
 logger.trace("[translog] recover [create] op of [{}][{}]", create.type(), create.id());
 }
 engine.create(engineCreate);
 break;

终于看到了实际的translog replay 逻辑了。这里调用了标准的InternalEngine.create 等方法进行日志的恢复。其实比较有意思的是,我们在日志回放的过程中,依然会继续写translog。这里就会导致一个问题,如果我在做日志回放的过程中,服务器由当掉了(或者ES instance 重启了),那么就会导致translog 变多了。这个地方是否可以再优化下?

假设我们完成了Translog 回放后,如果确实有重放,那么就行flush动作,删除translog,否则就commit Index。具体逻辑由如下的代码来完成:

if (opsRecovered > 0) {
 opsRecovered, translogGeneration == null ? null : translogGeneration.translogFileGeneration, translog
 .currentFileGeneration());
 flush(true, true);
 } else if (translog.isCurrent(translogGeneration) == false) {
 commitIndexWriter(indexWriter, translog, lastCommittedSegmentInfos.getUserData().get(Engine.SYNC_COMMIT_ID));
 }

接着就进入了finalizeRecovery,然后,就没然后了。

indexShard.finalizeRecovery();
 String indexName = indexShard.shardId().index().name();
 for (Map.Entry<String, Mapping> entry : typesToUpdate.entrySet()) {
 validateMappingUpdate(indexName, entry.getKey(), entry.getValue());
 }
 indexShard.postRecovery("post recovery from shard_store");

Primary的迁移/Replication的生成和迁移

一般这种recovery其实就是发生relocation或者调整副本的时候发生的。所以集群是在正常状态,一定有健康的primary shard存在,所以我们也把这种recovery叫做Peer Recovery。 入口和前面的Primary恢复是一样的,代码如下:

if (isPeerRecovery(shardRouting)) {
 //走的这个分支
.....
RecoveryState.Type type = shardRouting.primary() ? RecoveryState.Type.RELOCATION : RecoveryState.Type.REPLICA;
 recoveryTarget.startRecovery(indexShard, type, sourceNode, new PeerRecoveryListener(shardRouting, indexService, indexMetaData));
...... 
}
else {
 ......
}

核心代码自然是 recoveryTarget.startRecovery。这里的recoveryTarget的类型是: org.elasticsearch.indices.recovery.RecoveryTarget

startRecovery方法的核心代码是:

threadPool.generic().execute(new RecoveryRunner(recoveryId));

也是启动一个县城异步执行的。RecoveryRunner调用的是RecoveryTarget的 doRecovery方法,在该方法里,会发出一个RPC请求:

final StartRecoveryRequest request = new StartRecoveryRequest(recoveryStatus.shardId(), recoveryStatus.sourceNode(), clusterService.localNode(), false, metadataSnapshot, recoveryStatus.state().getType(), recoveryStatus.recoveryId());

recoveryStatus.indexShard().prepareForIndexRecovery();
 recoveryStatus.CancellableThreads().execute(new CancellableThreads.Interruptable() {
 @Override
 public void run() throws InterruptedException {
 responseHolder.set(transportService.submitRequest(request.sourceNode(), RecoverySource.Actions.START_RECOVERY, request, new FutureTransportResponseHandler<RecoveryResponse>() {
 @Override
 public RecoveryResponse newInstance() {
 return new RecoveryResponse();
 }
 }).txGet());
 }
 });

这个时候进入 INDEX Stage。 那谁接受处理的呢? 我们先看看现在的类名叫啥? RecoveryTarget。 我们想当然的想,是不是有RecoverySource呢? 发现确实有,而且该类确实也有一个处理类:

class StartRecoveryTransportRequestHandler extends TransportRequestHandler<StartRecoveryRequest> {
 @Override
 public void messageReceived(final StartRecoveryRequest request, final TransportChannel channel) throws Exception {
 RecoveryResponse response = recover(request);
 channel.sendResponse(response);
 }
 }

ES里这种通过Netty进行交互的方式,大家可以看看我之前写文章ElasticSearch Rest/RPC 接口解析。

这里我们进入RecoverSource对象的recover方法:

private RecoveryResponse recover(final StartRecoveryRequest request) {
 .....
 if (IndexMetaData.isOnSharedFilesystem(shard.indexSettings())) {
 handler = new SharedFSRecoverySourceHandler(shard, request, recoverySettings, transportService, logger);
 } else {
 handler = new RecoverySourceHandler(shard, request, recoverySettings, transportService, logger);
 }
 ongoingRecoveries.add(shard, handler);
 try {
 return handler.recoverToTarget();
 } finally {
 ongoingRecoveries.remove(shard, handler);
 }
 }

我们看到具体负责处理的类是RecoverySourceHandler,之后调用该类的recoverToTarget方法。我对下面的代码做了精简,方便大家看清楚。

public RecoveryResponse recoverToTarget() {
 final Engine engine = shard.engine();
 assert engine.getTranslog() != null : "translog must not be null";
 try (Translog.View translogView = engine.getTranslog().newView()) {

 final SnapshotIndexCommit phase1Snapshot;
 phase1Snapshot = shard.snapshotIndex(false);
 phase1(phase1Snapshot, translogView);

 try (Translog.Snapshot phase2Snapshot = translogView.snapshot()) {
 phase2(phase2Snapshot);
 } catch (Throwable e) {
 throw new RecoveryEngineException(shard.shardId(), 2, "phase2 failed", e);
 }

 finalizeRecovery();
 }
 return response;
 }

首先创建一个Translog的视图(创建视图的细节我现在也还没研究),接着的话对当前的索引进行snapshot。 然后进入phase1阶段,该阶段是把索引文件和请求的进行对比,然后得出有差异的部分,主动将数据推送给请求方。之后进入文件清理阶段,然后就进入translog 阶段:

protected void prepareTargetForTranslog(final Translog.View translogView) {

接着进入第二阶段:

try (Translog.Snapshot phase2Snapshot = translogView.snapshot()) {
 phase2(phase2Snapshot); 
 }

对当前的translogView 进行一次snapshot,然后进行translog发送:

int totalOperations = sendSnapshot(snapshot);

具体的发送逻辑如下:

cancellableThreads.execute(new Interruptable() {
 @Override
 public void run() throws InterruptedException {
 final RecoveryTranslogOperationsRequest translogOperationsRequest = new RecoveryTranslogOperationsRequest(
 request.recoveryId(), request.shardId(), operations, snapshot.estimatedTotalOperations());
 transportService.submitRequest(request.targetNode(), RecoveryTarget.Actions.TRANSLOG_OPS, translogOperationsRequest,
 recoveryOptions, EmptyTransportResponseHandler.INSTANCE_SAME).txGet();
 }
 });

这里发的请求,都是被 RecoveryTarget的TranslogOperationsRequestHandler 处理器来完成的,具体代码是:

@Override
 public void messageReceived(final RecoveryTranslogOperationsRequest request, final TransportChannel channel) throws Exception {
 try (RecoveriesCollection.StatusRef statusRef = onGoingRecoveries.getStatusSafe(request.recoveryId(), request.shardId())) {
 final ClusterStateObserver observer = new ClusterStateObserver(clusterService, null, logger);
 final RecoveryStatus recoveryStatus = statusRef.status();
 final RecoveryState.Translog translog = recoveryStatus.state().getTranslog();
 translog.totalOperations(request.totalTranslogOps());
 assert recoveryStatus.indexShard().recoveryState() == recoveryStatus.state();
 try {
 recoveryStatus.indexShard().performBatchRecovery(request.operations());

这里调用IndexShard.performBatchRecovery进行translog 的回放。

最后发送一个finalizeRecovery给target 节点,完成recovering操作。

关于Recovery translog 配置相关

在如下的类里有:

//org.elasticsearch.index.translog.TranslogService
INDEX_TRANSLOG_FLUSH_INTERVAL = "index.translog.interval";
INDEX_TRANSLOG_FLUSH_THRESHOLD_OPS = "index.translog.flush_threshold_ops";
INDEX_TRANSLOG_FLUSH_THRESHOLD_SIZE = "index.translog.flush_threshold_size";
INDEX_TRANSLOG_FLUSH_THRESHOLD_PERIOD = "index.translog.flush_threshold_period";
INDEX_TRANSLOG_DISABLE_FLUSH = "index.translog.disable_flush";

当服务器恢复时发现有存在的translog日志,就会进入TRANSLOG 阶段进行replay。translog 的recovery 是走的标准的InternalEngine.create/update等方法,并且还会再写translog,同时还有一个影响性能的地方是很多数据可能已经存在,会走update操作,所以性能还是非常差的。这个目前能够想到的解决办法是调整flush日志的频率,保证存在的translog 尽量的少。 上面的话可以看出有三个控制选项:

//每隔interval的时间,就去检查下面三个条件决定是不是要进行flush,
//默认5s。时间过长,会超出下面阈值比较大。
index.translog.interval 

//超过多少条日志后需要flush,默认Int的最大值
index.translog.flush_threshold_ops 

//定时flush,默认30m 可动态设置
index.translog.flush_threshold_period

//translog 大小超过多少后flush,默认512m 
index.translog.flush_threshold_size

本质上translog的恢复速度和条数的影响关系更大些,所以建议大家设置下 index.translog.flush_threshold_ops,比如多少条就一定要flush,否则积累的太多,
出现故障,恢复就慢了。这些参数都可以动态设置,但建议放到配置文件。

ElasticSearch Recovery 分析

相关推荐