python实现kNN算法
kNN(k-nearest neighbor)是一种基本的分类与回归的算法。这里我们先只讨论分类中的kNN算法。
k邻近算法的输入为实例的特征向量,对对应于特征空间中的点;输出为实例的类别,可以取多类,k近邻法是建设给定一个训练数据集,其中的实例类别已定,分类时,对于新的实例,根据其k个最邻近的训练实例的类别,通过多数表决等方式进行预测。所以可以说,k近邻法不具有显示的学习过程。k临近算法实际上是利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”
k值的选择,距离的度量和分类决策规则是k近邻算法的三个基本要素。
这里需要说明的是,对于距离的度量,我们有很多种度量方法可以选择,如欧氏距离(2-范数),曼哈顿距离(1-范数),无穷范数等,根据不同的实例,我们可以选择不同的距离度量方法。
下面给出了利用python和sklearn库实现的kNN算法的过程及部分注释:
# coding=utf-8 # 首先利用sklearn的库进行knn算法的建立与预测 # from sklearn import neighbors # from sklearn import datasets # # knn = neighbors.KNeighborsClassifier() # 调用分类器赋在变量knn上 # # iris = datasets.load_iris() # 返回一个数据库,赋值在iris上 # # print iris # 显示这个数据集 # # knn.fit(iris.data, iris.target) # fit的第一个参数 是特征值矩阵,第二个参数是一维的向量 # # predictedLabel = knn.predict([[0.1,0.2,0.3,0.4]]) # # print predictedLabel # 下面自己写一个程序实现knn算法 import csv import random import math import operator # filename是指文件名,split是某一个数字,数字前的数据当做训练集,数字后的数据当做测试集 # trainingSet是训练集,testSet是测试集 # 函数作用,加载文件,并将文件通过随机数的方法分为训练集和测试集 def loadDataset(filename, split, trainingSet=[], testSet=[]): with open(filename, 'rb') as csvfile: # 导入文件为csvfile格式 lines = csv.reader(csvfile) # 读取所有的行 reader函数的作用 dataset = list(lines) # 将所有的行转换为list的数据节后 for x in range(len(dataset)-1): # x在总共的行数中遍历 for y in range(4): dataset[x][y] = float(dataset[x][y]) if random.random() < split: trainingSet.append(dataset[x]) else: testSet.append(dataset[x]) # 函数作用:计算欧氏距离 # 函数的输入是两个实例和他们的维度 def euclideanDistance(instance1, instance2, length): distance = 0 for x in range(length): # 对于每一个维度内进行一个差的计算,计算出所有维度的平方和 distance += pow((instance1[x] - instance2[x]),2) return math.sqrt(distance) # 函数作用:返回最近的k的neightbor # 也就是返回在trainingSet中距离testInstance最近的k个邻居 def getNeigthbors(trainingSet, testInstance, k): distances =[] # 距离的容器,用来存放所有的距离值 length = len(testInstance) - 1 # 用来存放testInstance的维度 for x in range(len(trainingSet)): # 对于每一个x 计算训练集中的数据与实例的距离 dist = euclideanDistance(testInstance,trainingSet[x],length) distances.append((trainingSet[x],dist)) # 把这些距离从小到大排起来 distances.sort(key=operator.itemgetter(1)) neighbors = [] for x in range(k): neighbors.append(distances[x][0]) return neighbors # 返回最近的邻居 def getResponse(neighbors): classVotes = {} for x in range(len(neighbors)): response = neighbors[x][-1] if response in classVotes: classVotes[response] += 1 else: classVotes[response] = 1 sortedVotes = sorted(classVotes.iteritems(),key=operator.itemgetter(1),reverse=True) return sortedVotes[0][0] # 用来检验预测结果的正确率 def getAccuracy(testSet,predictions): correct = 0 for x in range(len(testSet)): if testSet[x][-1] == predictions[x]: # [-1]值的是最后一个值,也就是每行的最后的值,即为花的分类 correct += 1 return (correct/float(len(testSet))) * 100.00 def main(): # prepare data trainingSet = [] testSet = [] split = 0.67 loadDataset('irisdata.txt',split,trainingSet,testSet) # r的作用是防止错误字符串意思 print 'Train Set' + repr(len(trainingSet)) print 'Test Set' + repr(len(testSet)) # generate predicitions predicitions = [] k = 3 for x in range(len(testSet)): neighbors = getNeigthbors(trainingSet,testSet[x],k) result = getResponse(neighbors) predicitions.append(result) print('> predicition = ' + repr(result) + ', actual = ' +repr(testSet[x][-1])) accuracy = getAccuracy(testSet,predicitions) print('Accuracy:' + repr(accuracy) + '%') main()
程序执行后,相应的输出如下:
相关推荐
scuyxi 2020-10-25
tulensa 2020-05-30
wuxiaosi0 2020-02-03
BigCowPeking 2020-01-18
PeterHuang0 2019-12-11
蜗牛慢爬的李成广 2019-11-30
卖小孩的咖啡 2019-11-09
卖小孩的咖啡 2019-11-08
Happyunlimited 2019-11-03
tuonioooo 2019-07-22
卖小孩的咖啡 2019-10-28
bush 2019-04-25
gotea 2015-12-17
gotea 2011-04-18
wuxiaosi0 2019-07-01
seedcup 2019-07-01
SongLynn 2019-07-01
算法改变人生 2019-06-30