InputFomrat各种子类实例

0 TextInputFormat   extends FileInputFomrat<LongWritable,Text>  是默认读取文件的切分器

    其内的LineRecordReader:用来读取每一行的内容,

  LineRecordReader:内的 nextKeyValue(){}中,key的赋值在:

  initialize()方法内, key=start=split.getStart();   split假如对应文件 hello.txt 期内为hello you  hello me

  那么起始位置就是0

  end = start + split.getLength(),

  而行文本在方法 读取到的行字节长度=readLine(...)中读取,对应到LineReader.readLine(...) 170行

  string key = getCurrentKey()   string value = getCurrentValue() 中得到

  然后在Mapper类中:

 while(LineRecordReader.nextKeyValue()){

   key = linerecordreader.getCurrentKey()'

   value = linerecordreader.getCurrentValue()

   map.(key,value,context); 不停的将键值对写出去

}

1 DBInputFormat:

    DBInputFormat 在读取数据时,产生的键值对是 <LongWritable,DBWritable的实例>

    LongWritable仍旧是偏移量,

  可以参看 org.apache.hadoop.mapreduce.lib.db.DBRecordReader.nextKeyValue()/232行,如下

 key.set(pos + split.getStart());   来确认 表示的仍旧是偏移量

package inputformat;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.net.URI;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;


import mapreduce.MyWordCount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.db.DBInputFormat;
import org.apache.hadoop.mapreduce.lib.db.DBWritable;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * 目的:  将mysql/test库/myuser表中将字段id,name对应的属性通过 mapreduce(下面例子仅是通过map 没有reduce操作)将记录写出到hdfs中
 * mysql--->map--->hdfs
 * 要运行本示例
 * 1.把mysql的jdbc驱动放到各TaskTracker节点的hadoop/mapreduce/lib目录下
 * 2.重启集群
 *
 */
public class MyDBInputFormatApp {
	private static final String OUT_PATH = "hdfs://hadoop0:9000/out";

	public static void main(String[] args) throws Exception{
		Configuration conf = new Configuration();
		// 连接数据库  代码尽量考前写 写在后面执行会报错
		DBConfiguration.configureDB(conf, "com.mysql.jdbc.Driver", "jdbc:mysql://hadoop0:3306/test", "root", "admin");
		
		final FileSystem filesystem = FileSystem.get(new URI(OUT_PATH), conf);
		if(filesystem.exists(new Path(OUT_PATH))){
			filesystem.delete(new Path(OUT_PATH), true);
		}
		
		final Job job = new Job(conf , MyDBInputFormatApp.class.getSimpleName()); // 创建job
		job.setJarByClass(MyDBInputFormatApp.class);
		
		job.setInputFormatClass(DBInputFormat.class);// 指定inputsplit具体实现类
		// 下面方法参数属性为: 操作javabean, 对应表名, 查询条件,排序要求,需要查询的表字段
		DBInputFormat.setInput(job, MyUser.class, "myuser", null, null, "id", "name");//
		// 设置map类和map处理的 key  value 对应的数据类型
		job.setMapperClass(MyMapper.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(NullWritable.class);
		

		job.setNumReduceTasks(0);		//指定不需要使用reduce,直接把map输出写入到HDFS中
		job.setOutputKeyClass(Text.class); // 设置job output key 输出类型
		job.setOutputValueClass(NullWritable.class);// 设置job output value 输出类型
		
		FileOutputFormat.setOutputPath(job, new Path(OUT_PATH));
		
		job.waitForCompletion(true);
	}
	//<k1,v1>对应的是数据库对应表下记录位置,和这行对应的JavaBean,   <k2,v2>表示经过map处理好输出结果
	public static class MyMapper extends Mapper<LongWritable, MyUser, Text, NullWritable>{
		protected void map(LongWritable key, MyUser value, Context context) throws java.io.IOException ,InterruptedException {
			context.write(new Text(value.toString()), NullWritable.get());
		};
	}

	
	/**
	 * Writable是为了在Hadoop各节点之间传输使用的,因此需要实例化
	 * DBWritable表示和数据库传输时使用的
	 * @author zm
	 *
	 */
	public static class MyUser implements Writable, DBWritable{
		int id;
		String name;
		// 针对Writable 需要重写的方法
		@Override
		public void write(DataOutput out) throws IOException {
			out.writeInt(id);
			Text.writeString(out, name);
		}

		@Override
		public void readFields(DataInput in) throws IOException {
			this.id = in.readInt();
			this.name = Text.readString(in);
		}

		// 针对DBWritable需要重写的方法
		@Override
		public void write(PreparedStatement statement) throws SQLException {
			statement.setInt(1, id);
			statement.setString(2, name);
		}

		@Override
		public void readFields(ResultSet resultSet) throws SQLException {
			this.id = resultSet.getInt(1);
			this.name = resultSet.getString(2);
		}

		@Override
		public String toString() {
			return id + "\t" + name;
		}
		
	}
}

2 NLineInputFormat:

  这种格式下,split的数量就不是由文件对应block块个数决定的, 而是由设置处理多少行决定,

  比如一个文件 100行, 设置NlineInputFormat 处理2行,那么会产生50个map任务, 每个map任务

  仍旧一行行的处理 会调用2次map函数、

package inputformat;

import java.net.URI;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.NLineInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
 * TextInputFormat处理的数据来自于一个InputSplit。InputSplit是根据大小划分的。
 * NLineInputFormat决定每个Mapper处理的记录数是相同的。
 * 设置map处理行数多,则需要产生的map个数就会减少
 */
public class MyNLineInputFormatApp {
	private static final String INPUT_PATH = "hdfs://hadoop0:9000/hello";
	private static final String OUT_PATH = "hdfs://hadoop0:9000/out";

	public static void main(String[] args) throws Exception{
		// 定义conf
		Configuration conf = new Configuration();
		//设置每个map可以处理多少条记录,默认是1行,这里设置为每个map处理的记录数都是2个
		conf.setInt("mapreduce.input.lineinputformat.linespermap", 2);
		final FileSystem filesystem = FileSystem.get(new URI(OUT_PATH), conf);
		if(filesystem.exists(new Path(OUT_PATH))){
			filesystem.delete(new Path(OUT_PATH), true);
		}
		// 定义job
		final Job job = new Job(conf , MyNLineInputFormatApp.class.getSimpleName());
		job.setJarByClass(MyNLineInputFormatApp.class);
		// 定义 inputformat要处理的文件位置和具体处理实现类
		FileInputFormat.setInputPaths(job, INPUT_PATH);
		job.setInputFormatClass(NLineInputFormat.class);
		// 设置map
		job.setMapperClass(MyMapper.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(LongWritable.class);
		// 设置reduce
		job.setReducerClass(MyReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(LongWritable.class);
		// 设置处理最终结果输出路径
		FileOutputFormat.setOutputPath(job, new Path(OUT_PATH));
		
		job.waitForCompletion(true);
	}
	
	public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
		//解析源文件会产生2个键值对,分别是<0,hello you><10,hello me>;所以map函数会被调用2次
		protected void map(LongWritable key, Text value, org.apache.hadoop.mapreduce.Mapper<LongWritable,Text,Text,LongWritable>.Context context) throws java.io.IOException ,InterruptedException {
			//为什么要把hadoop类型转换为java类型?
			final String line = value.toString();
			final String[] splited = line.split("\t");
			
			//产生的<k,v>对少了
			for (String word : splited) {
				//在for循环体内,临时变量word的出现次数是常量1
				context.write(new Text(word), new LongWritable(1));
			}
		};
	}
	
	//map函数执行结束后,map输出的<k,v>一共有4个,分别是<hello,1><you,1><hello,1><me,1>
	//分区,默认只有一个区
	//排序后的结果:<hello,1><hello,1><me,1><you,1>
	//分组后的结果:<hello,{1,1}>  <me,{1}>  <you,{1}>
	//归约(可选)
	
	
	
	//map产生的<k,v>分发到reduce的过程称作shuffle
	public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable>{
		//每一组调用一次reduce函数,一共调用了3次
		//分组的数量与reduce函数的调用次数有什么关系?
		//reduce函数的调用次数与输出的<k,v>的数量有什么关系?
		protected void reduce(Text key, java.lang.Iterable<LongWritable> values, org.apache.hadoop.mapreduce.Reducer<Text,LongWritable,Text,LongWritable>.Context context) throws java.io.IOException ,InterruptedException {
			//count表示单词key在整个文件中的出现次数
			long count = 0L;
			for (LongWritable times : values) {
				count += times.get();
			}
			context.write(key, new LongWritable(count));
		};
	}
}

3 KeyValueInputFormat:

 如果行中有分隔符,那么分隔符前面的作为key,后面的作为value

 如果行中没有分隔符,那么整行作为key,value为空

 默认分隔符为 \t

package inputformat;

import java.net.URI;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueLineRecordReader;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
 * 以hello文件内容为如下为例:
 * hello	you
 * hello	me
 *
 * 特点是: 
 * 	Each line is divided into key and value parts by a separator byte. If no
	such a byte exists, the key will be the entire line and value will be empty
    通过分隔符将每一行切分 切分后结果分别作为key value
	如果没有分隔符,那么正一行就作为key  值为null
	如果一行中有多个制表符的话,会取第一个作为key 剩余作为value,后面的也不会再分割了
	
	KeyValueInputForamt他用特定分隔符分割来形成自己的key value,看源码(KeyValueLineRecordReader下为\t)默制默认分隔符为制表符
	
	输出结果为:
	hello 1
	you 1
	helllo 1
	me 1
 */
public class MyKeyValueTextInputFormatApp {
	private static final String INPUT_PATH = "hdfs://hadoop0:9000/hello";
	private static final String OUT_PATH = "hdfs://hadoop0:9000/out";

	public static void main(String[] args) throws Exception{
		Configuration conf = new Configuration();
		conf.set(KeyValueLineRecordReader.KEY_VALUE_SEPERATOR, "\t");
		
		final FileSystem filesystem = FileSystem.get(new URI(OUT_PATH), conf);
		if(filesystem.exists(new Path(OUT_PATH))){
			filesystem.delete(new Path(OUT_PATH), true);
		}
		// 创建job
		final Job job = new Job(conf , MyKeyValueTextInputFormatApp.class.getSimpleName());
		job.setJarByClass(MyKeyValueTextInputFormatApp.class);
		// 设置InputFormat处理文件路径和具体操作实体类
		FileInputFormat.setInputPaths(job, INPUT_PATH);
		job.setInputFormatClass(KeyValueTextInputFormat.class);
		// 设置map
		job.setMapperClass(MyMapper.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(LongWritable.class);
		// 设置reduce 这里reduce设置为0
		job.setNumReduceTasks(0);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(LongWritable.class);
		// 设置最终结果输出路径
		FileOutputFormat.setOutputPath(job, new Path(OUT_PATH));
		
		job.waitForCompletion(true);
	}
	
	public static class MyMapper extends Mapper<Text, Text, Text, LongWritable>{
		protected void map(Text key, Text value, org.apache.hadoop.mapreduce.Mapper<Text,Text,Text,LongWritable>.Context context) throws java.io.IOException ,InterruptedException {
				context.write(key, new LongWritable(1));
				context.write(value, new LongWritable(1));
		};
	}
}

GenericWritable

适用于 不同输入源下,多map输出类型不同

package inputformat;

import java.net.URI;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.GenericWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.input.MultipleInputs;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * MyMapper, MyMapper2的 v2输出类型一个是longWritable,一个是String, 两者需要统一成一个输出类型,
 * 以方便job在设置v2类型----> job.setMapOutputValueClass(MyGenericWritable.class)
 * 
 * 文件hello 内容为:
 * hello	you
 * hello	me
 * 
 * 文件hello2 内容为:
 * hello,you
 * hello,me
 * @author zm
 *
 *
 *结果:
 *[root@master hadoop]# hadoop fs -text /out/part-r-00000
Warning: $HADOOP_HOME is deprecated.

hello   4
me      2
you     2
 */
public class MyGenericWritableApp {
	private static final String OUT_PATH = "hdfs://master:9000/out";

	public static void main(String[] args) throws Exception{
		Configuration conf = new Configuration();
		final FileSystem filesystem = FileSystem.get(new URI(OUT_PATH), conf);
		if(filesystem.exists(new Path(OUT_PATH))){
			filesystem.delete(new Path(OUT_PATH), true);
		}
		
		final Job job = new Job(conf , MyGenericWritableApp.class.getSimpleName());
		job.setJarByClass(MyGenericWritableApp.class);
		
		// 设置每种输入文件的位置   具体切分文件类  和对应的处理map类  
		MultipleInputs.addInputPath(job, new Path("hdfs://master:9000/hello"), KeyValueTextInputFormat.class, MyMapper.class);
		MultipleInputs.addInputPath(job, new Path("hdfs://master:9000/hello2"), TextInputFormat.class, MyMapper2.class);
		
		// 设置map
		//job.setMapperClass(MyMapper.class);	//不应该有这一行  上面已经设置好了map类
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(MyGenericWritable.class);
		
		// 设置reduce
		job.setReducerClass(MyReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(LongWritable.class);
		
		// 设置输出结果存放路径
		FileOutputFormat.setOutputPath(job, new Path(OUT_PATH));
		
		job.waitForCompletion(true);
	}
	
	public static class MyMapper extends Mapper<Text, Text, Text, MyGenericWritable>{
		//解析源文件会产生2个键值对,分别是<hello,you>  <hello,me>;所以map函数会被调用2次
		// 处理后结果为: <hello,(MyGenericWritable(1),MyGenericWritable(1))>  <you,(MyGenericWritable(1))>  <me,(MyGenericWritable(1))>
		protected void map(Text key, Text value, org.apache.hadoop.mapreduce.Mapper<Text,Text,Text,MyGenericWritable>.Context context) throws java.io.IOException ,InterruptedException {
				context.write(key, new MyGenericWritable(new LongWritable(1)));
				context.write(value, new MyGenericWritable(new LongWritable(1)));
		};
	}
	
	public static class MyMapper2 extends Mapper<LongWritable, Text, Text, MyGenericWritable>{
		//解析源文件会产生2个键值对,分别是<0,(hello,you)><10,(hello,me)>;键值对内的()是我自己加上去的为了便于和前面偏移量的,区分开来 所以map函数会被调用2次
		// 处理后结果为: <hello,(MyGenericWritable("1"),MyGenericWritable("1"))>  <you,(MyGenericWritable("1"))>  <me,(MyGenericWritable("1"))> 
		protected void map(LongWritable key, Text value, org.apache.hadoop.mapreduce.Mapper<LongWritable,Text,Text,MyGenericWritable>.Context context) throws java.io.IOException ,InterruptedException {
			//为什么要把hadoop类型转换为java类型?
			final String line = value.toString();
			final String[] splited = line.split(",");
			
			//产生的<k,v>对少了
			for (String word : splited) {
				System.out.println("MyMapper2 word is:" + word);
				//在for循环体内,临时变量word的出现次数是常量1
				final Text text = new Text("1");
				context.write(new Text(word), new MyGenericWritable(text));
			}
			
		};
	}
	
	//map产生的<k,v>分发到reduce的过程称作shuffle
	public static class MyReducer extends Reducer<Text, MyGenericWritable, Text, LongWritable>{
		//每一组调用一次reduce函数,一共调用了3次
		//分组的数量与reduce函数的调用次数有什么关系?
		//reduce函数的调用次数与输出的<k,v>的数量有什么关系?
		protected void reduce(Text key, java.lang.Iterable<MyGenericWritable> values, org.apache.hadoop.mapreduce.Reducer<Text,MyGenericWritable,Text,LongWritable>.Context context) throws java.io.IOException ,InterruptedException {
			//count表示单词key在整个文件中的出现次数
			long count = 0L;
			for (MyGenericWritable times : values) {
				final Writable writable = times.get();
				if(writable instanceof LongWritable) {
					count += ((LongWritable)writable).get();					
				}
				if(writable instanceof Text) {
					count += Long.parseLong(((Text)writable).toString());
				}
			}
			context.write(key, new LongWritable(count));
		};
	}
	
	/**
	 * 
	 * @author zm
	 *
	 */
	public static class MyGenericWritable extends GenericWritable{
		public MyGenericWritable() {}
		
		public MyGenericWritable(Text text) {
			super.set(text);
		}

		public MyGenericWritable(LongWritable longWritable) {
			super.set(longWritable);
		}

		// 数组里面存放要处理的类型
		@Override
		protected Class<? extends Writable>[] getTypes() {
			return new Class[] {LongWritable.class, Text.class};
		}
		
	}
}

5 CombineTextInputFormat:

将输入源目录下多个小文件 合并成一个文件(split)来交给mapreduce处理 这样只会生成一个map任务
比如用户给的文件全都是10K那种的文件, 其内部也是用的TextInputFormat 当合并大小大于(64M)128M的时候,
也会产生对应个数的split

6 SequenceFile: 也是合并,   还没明白和CombineTextInputFormat的区别在哪里:

import java.io.File;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.util.Collection;

import org.apache.commons.io.FileUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.SequenceFile.Writer;
import org.apache.hadoop.io.Text;

public class SequenceFileMore {

	public static void main(String[] args) throws IOException, URISyntaxException {
		
		final Configuration conf = new Configuration();
		final FileSystem fs = FileSystem.get(new URI("hdfs://h2single:9000/"), conf);
		Path path = new Path("/sf_logs");
		//写操作
		final Writer writer = new SequenceFile.Writer(fs, conf, path, Text.class, BytesWritable.class);
		// false表示不迭代子目录
		Collection<File> listFiles = FileUtils.listFiles(new File("/usr/local/logs"), new String[]{"log"}, false);
		for(File file : listFiles){ // 将/usr/local/logs下的所有.log文件 以对应文件文件名为key  对应文件内容字节数组为value 共同写入到/sf_logs内
			String fileName = file.getName();
			Text key = new Text(fileName);
			byte[] bytes = FileUtils.readFileToByteArray(file);
			BytesWritable value = new BytesWritable(bytes);
			writer.append(key, value);
		}
		
		IOUtils.closeStream(writer);
		
		//读操作
		final SequenceFile.Reader reader = new SequenceFile.Reader(fs, path, conf);
		final Text key = new Text();
		final BytesWritable val = new BytesWritable();
		
		while (reader.next(key, val)) {
			String fileName = "/usr/local/logs_bak/" + key.toString();
			File file = new File(fileName);
			FileUtils.writeByteArrayToFile(file, val.getBytes());
		}
		IOUtils.closeStream(reader);

	}

}

 7 MultipleInputs: 对应于 多个文件处理类型下 比如又要处理数据库的文件 同时又要处理小文件

这里仅将main函数拼接展示下,各自对应的mapper类自己去写:


InputFomrat各种子类实例
 

相关推荐