Python之matplotlib基础

Python之Matplotlib基础

Matplotlib是Python优秀的数据可视化第三方库

下载地址:https://pypi.org/project/matplotlib/#files

---关于如何安装控件,请参照另一篇博文
Matplotlib库的效果可参考
http://matplotlib.org/gallery.html
Matplotlib的使用 由各种可视化类构成,内部结构复杂,受Matlab库启发,Matplotlab.pyplot是绘制种类可视化图形的命令子库,相当于快捷方式。

#  引用库文件
import matplotlib.pyplot as plt

一个小示例

import matplotlib.pyplot as plt
plt.plot([2,3,4,5,1,6])
plt.ylabel("Grade")
plt.ylabel("number")
plt.axis([-1,11,0,7])
plt.savefig(‘test‘,dpi=600)#plt.savefig()将输出图形存储为文件,默认为png格式,可以通过dpi修改输出质量
plt.show()

得到结果
Python之matplotlib基础

绘制多图subplot

plot.subplot(nrows,ncols,plot_number)
在全局绘制区域中创建一个分区体系,并定位到一个子绘图区域
pyplot绘图区域示例

import numpy as np
import matplotlib.pyplot as plt

def f(t):
    return np.exp(-t) * np.cos(2 * np.pi * t)

a = np.arange(0.0, 5.0, 0.02)
plt.subplot(211)
plt.plot(a, f(a))
plt.subplot(2, 1, 2)
plt.plot(a, np.cos(2 * np.pi * a), ‘r--‘)
plt.savefig(‘test‘,dpi=600)
plt.show()

得到结果:
Python之matplotlib基础

pyplot的plot()函数详解

plt.plot(x,y,format_string,**kwargs)
x:x轴数据,列表或数组,可选
y:y轴数据,列表或数组
format_string: 控制曲线的格式字符串,可迁
**kwargs: 第二组或更多的(x,y,format_string)

注意:当绘制多条曲线时,各条曲线的x不能省略

format_string:控制曲线的格式字符串,可选。由颜色字符、风格字符和标记字符组成

颜色字符说明颜色字符说明
‘b‘blue‘m‘magenta洋红色
‘g‘green‘y‘黄色
‘r‘red‘k‘黑色
‘c‘cyan青绿色‘w‘白色
‘#008000‘RGB某颜色‘0.8‘灰度值字符串
风格字符说明
‘-‘实线
‘--‘破折线
‘-.‘点划线
‘:‘虚线
‘ ‘无线条
标记字符说明标记字符说明标记字符说明
‘.‘点标记‘1‘下花三角标记‘h‘竖六边形标记
‘,‘像素标记(极小点)‘2‘上花三角标记‘H‘横六边形标记
‘o‘实心圏标记‘3‘左花三角标记‘+‘十字形标记
‘v‘倒三角标记‘4‘右花三角标记‘x‘x标记
‘^‘上三角标记‘s‘实心方形标记‘D‘菱形标记
‘>‘右三角标记‘p‘实心五角标记‘d‘瘦菱形标记
‘<‘左三角标记‘*‘星形标记
**kwargs: 第二组或更多(x,y,format_string)
color: 控制颜色 如color=‘green‘
linestyle:线条控制 如linestyle=‘dashed‘
marker:标记风格,marker=‘o‘
markerfacecolor:标记颜色,markerfacecolor=‘blue‘
markersize:标记尺寸,markersize=20
...

pyplot的中文显示

pyplot并不默认支持中文显示,需要rcParams修改字体实现

全局设置中文字体

import matplotlib
import matplotlib.pyplot as plt 
matplotlib.rcParams[‘font.family‘]=‘SimHei‘
plt.plot([3,1,4,5,2])
plt.ylabel(‘纵轴值‘)
plt.savefig(‘test‘,dpi=600)
plt.show()

结果如下:
Python之matplotlib基础

rcParams的属性

属性说明
‘font.family‘用于显示字体的名字
‘font.style‘字体风格,正常‘normal‘或斜体‘italic‘
‘font.size‘字体大小,整数字号或者‘large‘,‘x-small‘

中文字体的种类

rcParams[‘font.family‘]

中文字体说明
‘SimHei‘中文黑体
‘Kaiti‘中文楷体
‘LiSu‘中文隶书
‘FangSong‘中文仿宋
‘YouYuan‘中文幼圆
STSong华文宋体

示例:

import matplotlib
import matplotlib.pyplot as plt 
import numpy as np
matplotlib.rcParams[‘font.family‘]=‘STSong‘
matplotlib.rcParams[‘font.size‘]=20
a = np.arange(0.0,5.0,0.02)
plt.xlabel(‘纵轴: 振幅‘)
plt.ylabel(‘横轴: 时间‘)
plt.plot(a,np.cos(2*np.pi*a),‘r--‘)
plt.savefig(‘test‘,dpi=600)
plt.show()

Python之matplotlib基础

局部设置中文字体

在有中文输出的地方,增加一个属性:fontproperties

import matplotlib.pyplot as plt 
import numpy as np

a = np.arange(0.0,5.0,0.02)
plt.xlabel(‘纵轴: 振幅‘, fontproperties=‘SimHei‘,fontsize=20)
plt.ylabel(‘横轴: 时间‘, fontproperties=‘SimHei‘,fontsize=20)
plt.plot(a,np.cos(2*np.pi*a),‘r--‘)
plt.savefig(‘test‘,dpi=600)
plt.show()

Python之matplotlib基础
注意到,如果设置全局字体的话,那么坐标轴的字体也被改变,局部设置中文字体不改变坐标轴的字体。

pyplot的文本显示

pyplot的文本显示函数

函数说明
plt.xlabel()对x轴增加文本标签
plt.ylabel()对y轴增加文本标签
plt.title()对图形本整体增加文本标签
plt.text()在任意位置增加文本
plt.annotate()在图形中增加带箭头的注释

text函数示例

import matplotlib.pyplot as plt 
import numpy as np
a = np.arange(0.0,5.0,0.02)
plt.xlabel(‘纵轴: 振幅‘, fontproperties=‘SimHei‘, fontsize=20, color = ‘green‘)
plt.ylabel(‘横轴: 时间‘, fontproperties=‘SimHei‘, fontsize=20)
plt.title(r‘正弦波实例$y=cos(2\pi x)$‘,fontproperties=‘SimHei‘,fontsize=25)
plt.text(2,1,r‘$\mu=100$‘,fontsize=15)
plt.plot(a,np.cos(2*np.pi*a),‘r--‘)
plt.savefig(‘test‘,dpi=600)
plt.show()

Python之matplotlib基础

annotate函数示例

import matplotlib.pyplot as plt 
import numpy as np
a = np.arange(0.0,5.0,0.02)
plt.plot(a,np.cos(2*np.pi*a),‘r--‘)
plt.xlabel(‘纵轴: 振幅‘, fontproperties=‘SimHei‘, fontsize=20, color = ‘green‘)
plt.ylabel(‘横轴: 时间‘, fontproperties=‘SimHei‘, fontsize=20)
plt.title(r‘正弦波实例$y=cos(2\pi x)$‘,fontproperties=‘SimHei‘,fontsize=25)
plt.annotate(r‘$\mu=100$‘,xy=(2,1),xytext=(3,1.5),
	arrowprops=dict(facecolor=‘black‘,shrink=0.1,width=2))
plt.axis([-1,6,-2,2])
plt.grid()
plt.savefig(‘test‘,dpi=600)
plt.show()

Python之matplotlib基础