【kafka KSQL】游戏日志统计分析(3)
接上篇文章 【kafka KSQL】游戏日志统计分析(2),本文主要通过实例展示KSQL的连接查询功能。
创建另一个topic
bin/kafka-topics --create --zookeeper localhost:2181 --replication-factor 1 --partitions 4 --topic propnew-normalized
往新topic中写入数据
bin/kafka-console-producer --broker-list localhost:9092 --topic propnew-normalized > {"user__name":"lzb", "prop__id":"id1"}
从prop-normalized主题创建Stream
CREATE STREAM PROP_USE_EVENT \ (user__name VARCHAR, \ prop__id VARCHAR ) \ WITH (KAFKA_TOPIC='propnew-normalized', \ VALUE_FORMAT='json');
重新设置ROWKEY为user__name
CREATE STREAM PROP_USE_EVENT_REKEY AS \ SELECT * FROM PROP_USE_EVENT \ PARTITION BY user__name;
查询完成3局对局且没有使用过道具的所有玩家
- 查询出所有玩家的对局情况,并创建表
USER_SCORE_TABLE
(前面已经创建过了):
CREATE TABLE USER_SCORE_TABLE AS \ SELECT username, COUNT(*) AS game_count, SUM(delta) AS delta_sum, SUM(tax) AS tax_sum \ FROM USER_SCORE_EVENT_REKEY \ WHERE reason = 'game' \ GROUP BY username;
- 查询出所有玩家的道具使用情况,并创建表
USER_PROP_TABLE
:
CREATE TABLE USER_PROP_TABLE AS \ SELECT user__name, COUNT(*) AS use_count \ FROM PROP_USE_EVENT_REKEY \ GROUP BY user__name;
- 使用LEFT JOIN进行左关联,并以此创建一个新的TABLE:
CREATE TABLE USER_SCORE_AND_PROP AS \ SELECT s.username AS username, s.game_count, s.tax_sum, s.delta_sum, p.use_count \ FROM USER_SCORE_TABLE s \ LEFT JOIN USER_PROP_TABLE p \ ON s.username = p.user__name;
- 查询对局数大于等于3,且没有使用过道具的玩家:
SELECT username FROM USER_SCORE_AND_PROP \ WHERE game_count >= 3 AND use_count IS NULL;
- 查询对局数大于等于3,且使用道具次数大于等于2的玩家:
SELECT username FROM USER_SCORE_AND_PROP \ WHERE game_count >= 3 AND use_count >= 2;
相关推荐
Kafka 2020-09-18
yanghuashuiyue 2020-11-14
liuxingen 2020-11-13
wangying 2020-11-13
王谦 2020-11-03
huangwei00 2020-10-14
shenzhenzsw 2020-10-09
guicaizhou 2020-09-30
jiaomrswang 2020-09-23
jyj0 2020-09-21
guicaizhou 2020-09-15
hannuotayouxi 2020-08-20
amwayy 2020-08-03
yangyutong00 2020-08-01
weikaixxxxxx 2020-08-01
PoppyEvan 2020-08-01
guicaizhou 2020-08-01
PoppyEvan 2020-07-29