学习进度十四(Spark之Java独立应用编程)
环境如下:
Hadoop 2.6.0以上
java JDK 1.7以上
Spark 3.0.0-preview2
二、java独立应用编程
1、安装maven
ubuntu中没有自带安装maven,需要手动安装maven。可以访问maven官方下载自己下载。这里直接给出apache-maven-3.6.3-bin.zip的下载地址,直接点击下载即可。
选择安装在/usr/local/maven中:
sudo unzip ~/下载/apache-maven-3.6.3-bin.zip -d /usr/local
cd /usr/local
sudo mv apache-maven-3.6.3/ ./maven
sudo chown -R hadoop ./maven
2、Java应用程序代码
在终端执行如下命令创建一个文件夹sparkapp2作为应用程序根目录
cd ~ #进入用户主文件夹
mkdir -p ./sparkapp2/src/main/java
在 ./sparkapp2/src/main/java 下建立一个名为 SimpleApp.java 的文件(vim ./sparkapp2/src/main/java/SimpleApp.java),添加代码如下:
/*** SimpleApp.java ***/
import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.Function;
public class SimpleApp {
public static void main(String[] args) {
String logFile = "file:///usr/local/spark/README.md"; // Should be some file on your system
JavaSparkContext sc = new JavaSparkContext("local", "Simple App",
"file:///usr/local/spark/", new String[]{"target/simple-project-1.0.jar"});
JavaRDD<String> logData = sc.textFile(logFile).cache();
long numAs = logData.filter(new Function<String, Boolean>() {
public Boolean call(String s) { return s.contains("a"); }
}).count();
long numBs = logData.filter(new Function<String, Boolean>() {
public Boolean call(String s) { return s.contains("b"); }
}).count();
System.out.println("Lines with a: " + numAs + ", lines with b: " + numBs);
}
}
该程序依赖Spark Java API,因此我们需要通过Maven进行编译打包。在./sparkapp2中新建文件pom.xml(vim ./sparkapp2/pom.xml),添加内容如下,声明该独立应用程序的信息以及与Spark的依赖关系:
<project> <groupId>edu.berkeley</groupId> <artifactId>simple-project</artifactId> <modelVersion>4.0.0</modelVersion> <name>Simple Project</name> <packaging>jar</packaging> <version>1.0</version> <repositories> <repository> <id>Akka repository</id> <url>http://repo.akka.io/releases</url> </repository> </repositories> <dependencies> <dependency> <!-- Spark dependency --> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.12</artifactId> <version>3.0.0-preview2</version> </dependency> </dependencies>
<!-- 如果不加下面这段可能会报错 -->
<build> <pluginManagement> <plugins> <plugin> <artifactId>maven-resources-plugin</artifactId> <version>2.7</version> </plugin> </plugins> </pluginManagement> </build>
</project>
关于Spark dependency的依赖关系,可以访问
<a>The Central Repository</a><span>。搜索spark-core可以找到相关依赖关系信息。</span>
3、使用maven打包java程序
为了保证maven能够正常运行,先执行如下命令检查整个应用程序的文件结构:
cd ~/sparkapp2
find
文件结构如下图:
接着,我们可以通过如下代码将这整个应用程序打包成Jar(注意:电脑需要保持连接网络的状态,而且首次运行同样下载依赖包,同样消耗几分钟的时间(笔者耗时2个小时左右,下载时的实时网速只有十几K,具体原因暂时不详)):
/usr/local/maven/bin/mvn package
如出现下图,说明生成Jar包成功:
4、通过spark-submit 运行程序
最后,可以通过将生成的jar包通过spark-submit提交到Spark中运行,如下命令:
/usr/local/spark/bin/spark-submit --class "SimpleApp" ~/sparkapp2/target/simple-project-1.0.jar 2>&1 | grep "Lines with a"
最后得到的结果如下:
本博客参考了林子雨的大数据原理与应用 第十六章 Spark 学习指南 http://dblab.xmu.edu.cn/blog/804-2/