超越谷歌MobileNet!华为提出端侧神经网络架构GhostNet|已开源

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

同样精度,速度和计算量均少于此前SOTA算法。这就是华为诺亚方舟实验室提出的新型端侧神经网络架构GhostNet。

GhostNet的核心是Ghost模块,与普通卷积神经网络相比,在不更改输出特征图大小的情况下,其所需的参数总数和计算复杂度均已降低,而且即插即用。

在ImageNet分类任务中,GhostNet在各种计算复杂度级别上始终优于其他竞争对手,比如谷歌的MobileNet系列、旷视的ShuffleNet系列、IGCV3、ProxylessNAS、FBNet、MnasNet等等。

关于GhostNet的论文已经被CVPR 2020收录,模型与代码也已经在GitHub上开源。华为诺亚方舟实验室是如何做到的?我们根据作者团队的解读,一一看来。

核心理念:用更少的参数来生成更多特征图

通常情况下,为了保证模型对输入数据有全面的理解,训练好的深度神经网络中,会包含丰富甚至冗余的特征图。