周志华等人新书:《演化学习:理论和算法的进展》正式上线!
整理编辑:三石
【新智元导读】近日,由周志华教授、俞扬教授和钱超研究员共同完成的新书——《Evolutionary Learning: Advances in Theories and Algorithms》正式上线!堪称“宝藏级”新书,速来收藏。
爱逛知乎的小编在2019年4月13日,发现一直关注的俞扬教授发了一篇推文"致青春",点进去一看,发现了”宝藏“!
于是便立即联系了俞扬教授,询问是否可以将这份资源转发或者介绍给大家。俞教授也很爽快,没过多久就给了肯定的答复。
《Evolutionary Learning: Advances in Theories and Algorithms》为原书名,因为微信公众号标题长度有限制,所以自行翻译成了中文:《演化学习:理论和算法的进展》。其中 Evolutionary Learning 网上很多翻译成:进化学习。但我阅读了俞扬教授的原文,里面说是演化学习,所以这里为了统一,我还是标明演化学习。
中文仅供参考,若翻译有问题,还请指正,大家还是以英文为主。
本书是由周志华教授、俞扬教授和钱超研究员三位共同完成,这里简单介绍一下三位:
周志华,现任南京大学计算机科学与技术系主任、南京大学计算机软件新技术国家重点实验室 常务副主任、机器学习与数据挖掘研究所 (LAMDA) 所长,校学术委员会委员。美国计算机学会(ACM)、美国科学促进会(AAAS)、国际人工智能学会 (AAAI) 、国际电气电子工程师学会 (IEEE) 、国际模式识别学会 (IAPR)、国际工程技术学会 (IET/IEE) 、中国计算机学会(CCF)、中国人工智能学会(CAAI) 等学会的会士 (Fellow),欧洲科学院 外籍院士。南京市政府人工智能产业顾问、证监会科技监管专家咨询委员会委员、江苏省政协委员、江苏省青联副主席等。
主要从事人工智能、机器学习、数据挖掘 等领域的研究工作。主持多项科研课题,出版《机器学习》(2016)与《Ensemble Methods: Foundations and Algorithms》(2012),在一流国际期刊和顶级国际会议发表论文百余篇,被引用三万余次。经常担任NIPS、ICML、AAAI、IJCAI、KDD等重要国际学术会议的领域主席。担任 中国计算机学会 常务理事、人工智能专业委员会主任,中国人工智能学会 常务理事,江苏省计算机学会副理事长,江苏省人工智能学会理事长,IEEE南京分部副主席。
周志华教授个人信息节选自:
http://cs.nju.edu.cn/zhouzh/zhouzh.files/resume_cn.htm
俞扬,博士,南京大学副教授,博士生导师。主要研究领域为人工智能、机器学习、强化学习。2011年8月加入南京大学计算机科学与技术系、机器学习与数据挖掘研究所(LAMDA)从事教学与科研工作。
曾获2013年全国优秀博士学位论文奖、2011年中国计算机学会优秀博士学位论文奖。发表论文40余篇,包括多篇Artificial Intelligence、IJCAI、AAAI、NIPS、KDD等人工智能、机器学习和数据挖掘国际顶级期刊和顶级会议论文。入选2018年IEEE Intelligent Systems杂志评选的AI's 10 to Watch,获2018 PAKDD Early Career Award、2017年江苏省计算机学会青年科技奖。共同发起并主办了亚洲强化学习系列研讨会(AWRL)、中国演化计算与学习系列研讨会(ECOLE),任人工智能领域国际顶级会议IJCAI'18领域主席、ICPR'18领域主席、ACML'17领域主席,任IEEE计算智能协会数据挖掘与大数据分析技术委员会委员、中国人工智能学会机器学习专委会委员、中国计算机学会人工智能与模式识别专委会委员,Artificial Intelligence、IJCAI、AAAI、KDD、ICML、NIPS、CVPR、ICCV等多个一流期刊的评审人和会议的程序委员。
俞扬教授个人信息节选自:
http://lamda.nju.edu.cn/yuy/cv_ch.ashx
钱超是中国科学技术大学副研究员。他的研究兴趣是人工智能,演化计算和机器学习。他在领先的国际期刊和会议论文集上发表了20多篇论文,包括人工智能,演化计算,IEEE 演化计算交易,Algorithmica,NIPS,IJCAI,AAAI等。他赢得了ACM GECCO 2011年度最佳论文奖(Theory Track)和IDEAL 2016年度最佳论文奖。他还曾担任IEEE计算智能学会(CIS)工作组“Theoretical Foundations of Bio-inspired Computation”的主席。
钱超研究员个人信息节选自:
http://staff.ustc.edu.cn/~chaoqian/
https://www.springer.com/cn/book/9789811359552#aboutAuthors
下面看看俞扬教授简单介绍该书的知乎原文"致青春"
https://zhuanlan.zhihu.com/p/62178187
正文(致青春)
最近与周老师、钱超一起完成了一本书。书的名字叫
《Evolutionary Learning: Advances in Theories and Algorithms》,但是对于我来说,可以叫“致青春”。从2005年硕士入学开始,抱着演化算法理论这个硬骨头开始啃。
我的数学基础并不好,在我同一届进入LAMDA的同学中,毫无疑问是垫底,但也许优点是胆子大,周老师说这个方向重要,那就干。这个领域真是四处不讨好,让我深刻体验了什么叫冷板凳。即使是在演化计算领域里,对于搞应用的来说,理论太滞后,没有指导意义,甚至关注理论进展的人都很少。而放在整个人工智能领域里,更是艰难,当时演化计算就已经是在顶级会议上冷下去的话题了。
2000年前,IJCAI还出现了演化计算的session,2000年左右,随着上一波演化神经网络结构优化的兴起演化算法也还在火(是的,NAS并不是这几年发明的,20年前的东西了),之后也随着神经网络的冷淡,大家放弃启发拥抱理论更清楚的方法,演化计算也迅速在顶级会议上隐匿。所以演化计算的论文要发在顶级会议上极其困难,而理论更甚,不仅要回答技术问题,还要回答诸如这个方向还有研究价值吗、这个理论怎么指导算法,之类的问题。
回想起来在AAAI 2006发表的第一篇做演化算法复杂度分析的论文,真是走运,其中一个审稿人一个字审稿意见都没写,直接打了满分。
看到最终成稿,收录了我们十几年努力的结果,感觉这么多年也没白做,现在从理论、算法、到应用效果都能打通,AAAI、IJCAI、NIPS也都有发表了,尤其是NIPS 2017的工作,回答了一个长久以来演化计算领域面临的核心挑战:“有什么问题能证明是以往算法做不到而演化算法能做到的”。
致我的青春年华。以后只能是个拼搏的中年人了。。。
书籍链接:
https://www.springer.com/cn/book/9789811359552
《Evolutionary Learning: Advances in Theories and Algorithms》简介
许多机器学习任务涉及解决复杂的优化问题,例如处理不可微分,非连续和非唯一的目标函数;在某些情况下,甚至难以定义明确的目标函数。演化学习( Evolutionary learning )应用演化算法来解决机器学习中的优化问题,并在许多应用中产生了令人满意的结果。然而,由于演化优化的启发性特征,迄今为止的大多数结果都是经验性的,缺乏理论支持。这个缺点使得进化学习不再受到机器学习社区的欢迎。
最近,为解决这个问题付出了相当大的努力。本书将分成系列来介绍这些努力,共分为四个部分:
- 第一部分:简要向读者介绍演化学习并提供了一些预备知识;
- 第二部分:介绍演化算法中运行时间和近似性能分析的一般理论工具;
- 第三部分:提出许多关于演化优化中主要因素的理论发现,例如recombination, representation, inaccurate fitness evaluation, and population;
- 第四部分:讨论了演化学习算法的发展,为几个代表性任务提供了可证明的理论保证。
致谢
在此感谢周志华教授、俞扬教授和钱超研究员 整理这么棒的书籍!
书籍链接:
https://www.springer.com/cn/book/9789811359552
本文经授权转载自微信公众号:CVer,ID:CVerNews