HDFS概述(一)

1. HDFS产出的背景及定义

1.1 HDFS产生的背景

随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种。

1.2 HDFS的定义

HDFS(Hadoop Distributed File System),它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。

HDFS的使用场景:适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据分析,并不适合用来做网盘应用。

2. HDFS的优缺点

2.1 优点:

1). 高容错性

(1)数据自动保存多个副本,它通过增加数据副本的样式,提高容错性

     HDFS概述(一)

(2)某一个数据副本丢失以后,它可以自动恢复

        HDFS概述(一)

2) 适合处理大数据

(1)数据规模:能够处理规模达到GB、TB、甚至PB的级的大数据 ;

3) 可构建在廉价机器上,通过多副本机制,提高可靠性。

2.2 缺点

1)不适合低时延的数据访问;

2)无法高效的对大量小文件进行存储:

(1)存储大量小文件的话,它会占用NameNode大量的内存来存储文件的目录和块信息;

(2)小文件的存储的寻址时间超过了读取时间,违反了HDFS的设计目标。

3)不支持并发的写入、文件随机修改

(1)一个文件只能有一个写,不允许多个线程同时写;

(2)仅支持数据的append(追加),不支持文件的随机修改

HDFS概述(一)

 

3. HDFS的组成架构

3.1 整体架构图如下:

       HDFS概述(一)

3.2 HDFS架构详解

1)NameNode(简称:ND):就是master,它是一个主管人员,负责管理HDFS的相关信息:

(1)管理HDFS的名称空间;

(2)管理副本的策略;

(3)管理数据块(Block)的映射信息;

(4)处理客户端的读写请求。

2)DataNode(简称:DN):就是slave,NameNode下达指令,DataNode执行实际的操作:

(1)存储实际的数据块;

(2)执行数据块的读/写操作。

3)Client:客户端,与NameNode交互的程序,职责或功能如下:

(1)文件切分:在上传文件至HDFS的时候,Client会将文件分切成一个个的Block上传;

(2)与NameNode交互,可以获取文件的位置信息(存在哪个节点上)

(3)Client可以通过一些命令来访问HDFS,比如增删改查操作;

(4)Client通过一些命令来管理HDFS,比如将NameNode格式化。

4)SecondaryNameNode:并非是NameNode的热备。当NameNode挂掉的时候,它并不会立即替换NameNode并提供服务。

(1)辅助NameNode,分担其工作量,比如定期合并FsImage和Edits(后边会讲到,这里不用理解),并将合并后的FsImage.checkPoint推送给NameNode;

(2)在紧急情况下可以辅助恢复NameNode。

4 HDFS的文件块大小

1)HDFS中的文件在物理上是按照块(Block)存储的,块id大小可以通过配置参数(dfs.blocksize)来规定,默认大小在Hadoop2.x的版本中是128M,老版本的是64M。

2)块的大小设定:文件的寻址时间应为块文件的传输时间的1%,这是比较合理的设定。

3)思考:为什么块的大小不能设置太小,也不能设置太大?

(1)HDFS的块如果设置的太小,会增加寻址时间,程序长时间在寻找块的存储位置;

(2)如果设置太大,从磁盘传输的时间会明显大于定位这个块的起始位置所需的时间。导致在处理这个块的数据时,浪费了大量的时间在IO上。

因此,块的大小可以根据数据量和磁盘的IO速度决定如何设置。

 

 

 

相关推荐