概念数据模型、逻辑数据模型、物理数据模型详解
数据模型所描述的内容包括三个部分:数据结构、数据操作、数据约束。
1)数据结构:数据模型中的数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据结构是数据模型的基础,数据操作和约束都建立在数据结构上。不同的数据结构具有不同的操作和约束。
2)数据操作:数据模型中数据操作主要描述在相应的数据结构上的操作类型和操作方式。
3)数据约束:数据模型中的数据约束主要描述数据结构内数据间的语法、词义联系、他们之间的制约和依存关系,以及数据动态变化的规则,以保证数据的正确、有效和相容。
项目开发流程详解:http://zz563143188.iteye.com/blog/1825168
数据模型按不同的应用层次分成三种类型:分别是概念数据模型、逻辑数据模型、物理数据模型。
1、概念数据模型(Conceptual Data Model):简称概念模型,主要用来描述世界的概念化结构,它使数据库的设计人员在设计的初始阶段,摆脱计算机系统及DBMS的具体技术问题,集中精力分析数据以及数据之间的联系等,与具体的数据管理系统(Database Management System,简称DBMS)无关。概念数据模型必须换成逻辑数据模型,才能在DBMS中实现。
概念数据模型是最终用户对数据存储的看法,反映了最终用户综合性的信息需求,它以数据类的方式描述企业级的数据需求,数据类代表了在业务环境中自然聚集成的几个主要类别数据。
概念数据模型的内容包括重要的实体及实体之间的关系。在概念数据模型中不包括实体的属性,也不用定义实体的主键。这是概念数据模型和逻辑数据模型的主要区别。
概念数据模型的目标是统一业务概念,作为业务人员和技术人员之间沟通的桥梁,确定不同实体之间的最高层次的关系。
2、逻辑数据模型(Logical Data Model):简称数据模型,这是用户从数据库所看到的模型,是具体的DBMS所支持的数据模型,如网状数据模型(Network Data Model)、层次数据模型(Hierarchical Data Model)等等。此模型既要面向用户,又要面向系统,主要用于数据库管理系统(DBMS)的实现。
逻辑数据模型反映的是系统分析设计人员对数据存储的观点,是对概念数据模型进一步的分解和细化。逻辑数据模型是根据业务规则确定的,关于业务对象、业务对象的数据项及业务对象之间关系的基本蓝图。
逻辑数据模型的内容包括所有的实体和关系,确定每个实体的属性,定义每个实体的主键,指定实体的外键,需要进行范式化处理。
逻辑数据模型的目标是尽可能详细的描述数据,但并不考虑数据在物理上如何来实现。