LeetCode 296. Best Meeting Point
原题链接在这里:https://leetcode.com/problems/best-meeting-point/
题目:
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.
Example:
Input: 1 - 0 - 0 - 0 - 1 | | | | | 0 - 0 - 0 - 0 - 0 | | | | | 0 - 0 - 1 - 0 - 0 Output: 6 Explanation: Given three people living at (0,0), (0,4), and (2,2): The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.
题解:
When trying to minimize the manhattan distance, it is trying to minimize the absolute deviations of x and y.
And median minimize the absolute deviations.
We get all x and y when there is a building.
And calculate absolute deviations.
Time Complexity: O(m * n). m = grid.length. n = grid[0].length.
Space: O(m + n).
AC Java:
class Solution {
public int minTotalDistance(int[][] grid) {
if(grid == null || grid.length == 0 || grid[0].length == 0){
return 0;
}
int m = grid.length;
int n = grid[0].length;
List<Integer> iIndexList = new ArrayList<>();
for(int i = 0; i < m ; i++){
for(int j = 0; j < n; j++){
if(grid[i][j] == 1){
iIndexList.add(i);
}
}
}
List<Integer> jIndexList = new ArrayList<>();
for(int j = 0; j < n; j++){
for(int i = 0; i < m; i++){
if(grid[i][j] == 1){
jIndexList.add(j);
}
}
}
int iDist = dist(iIndexList);
int jDist = dist(jIndexList);
return iDist + jDist;
}
private int dist(List<Integer> list){
int l = 0;
int r = list.size() - 1;
int res = 0;
while(l < r){
res += list.get(r--) - list.get(l++);
}
return res;
}
}