LeetCode 296. Best Meeting Point
原题链接在这里:https://leetcode.com/problems/best-meeting-point/
题目:
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|
.
Example:
Input: 1 - 0 - 0 - 0 - 1 | | | | | 0 - 0 - 0 - 0 - 0 | | | | | 0 - 0 - 1 - 0 - 0 Output: 6 Explanation: Given three people living at (0,0), (0,4), and (2,2): The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.
题解:
When trying to minimize the manhattan distance, it is trying to minimize the absolute deviations of x and y.
And median minimize the absolute deviations.
We get all x and y when there is a building.
And calculate absolute deviations.
Time Complexity: O(m * n). m = grid.length. n = grid[0].length.
Space: O(m + n).
AC Java:
class Solution { public int minTotalDistance(int[][] grid) { if(grid == null || grid.length == 0 || grid[0].length == 0){ return 0; } int m = grid.length; int n = grid[0].length; List<Integer> iIndexList = new ArrayList<>(); for(int i = 0; i < m ; i++){ for(int j = 0; j < n; j++){ if(grid[i][j] == 1){ iIndexList.add(i); } } } List<Integer> jIndexList = new ArrayList<>(); for(int j = 0; j < n; j++){ for(int i = 0; i < m; i++){ if(grid[i][j] == 1){ jIndexList.add(j); } } } int iDist = dist(iIndexList); int jDist = dist(jIndexList); return iDist + jDist; } private int dist(List<Integer> list){ int l = 0; int r = list.size() - 1; int res = 0; while(l < r){ res += list.get(r--) - list.get(l++); } return res; } }