Redis中的LFU算法
在Redis中的LRU算法文中说到,LRU
有一个缺陷,在如下情况下:
~~~~~A~~~~~A~~~~~A~~~~A~~~~~A~~~~~A~~| ~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~| ~~~~~~~~~~C~~~~~~~~~C~~~~~~~~~C~~~~~~| ~~~~~D~~~~~~~~~~D~~~~~~~~~D~~~~~~~~~D|
会将数据D误认为将来最有可能被访问到的数据。
Redis
作者曾想改进LRU
算法,但发现Redis
的LRU
算法受制于随机采样数maxmemory_samples
,在maxmemory_samples
等于10的情况下已经很接近于理想的LRU
算法性能,也就是说,LRU
算法本身已经很难再进一步了。
于是,将思路回到原点,淘汰算法的本意是保留那些将来最有可能被再次访问的数据,而LRU
算法只是预测最近被访问的数据将来最有可能被访问到。我们可以转变思路,采用一种LFU(Least Frequently Used)
算法,也就是最频繁被访问的数据将来最有可能被访问到。在上面的情况中,根据访问频繁情况,可以确定保留优先级:B>A>C=D。
Redis中的LFU思路
在LFU
算法中,可以为每个key维护一个计数器。每次key被访问的时候,计数器增大。计数器越大,可以约等于访问越频繁。
上述简单算法存在两个问题:
- 在
LRU
算法中可以维护一个双向链表,然后简单的把被访问的节点移至链表开头,但在LFU
中是不可行的,节点要严格按照计数器进行排序,新增节点或者更新节点位置时,时间复杂度可能达到O(N)。 - 只是简单的增加计数器的方法并不完美。访问模式是会频繁变化的,一段时间内频繁访问的key一段时间之后可能会很少被访问到,只增加计数器并不能体现这种趋势。
第一个问题很好解决,可以借鉴LRU
实现的经验,维护一个待淘汰key的pool。第二个问题的解决办法是,记录key最后一个被访问的时间,然后随着时间推移,降低计数器。
Redis
对象的结构如下:
typedef struct redisObject { unsigned type:4; unsigned encoding:4; unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or * LFU data (least significant 8 bits frequency * and most significant 16 bits access time). */ int refcount; void *ptr; } robj;
在LRU
算法中,24 bits的LRU
是用来记录LRU time
的,在LFU
中也可以使用这个字段,不过是分成16 bits与8 bits使用:
16 bits 8 bits +----------------+--------+ + Last decr time | LOG_C | +----------------+--------+
高16 bits用来记录最近一次计数器降低的时间ldt
,单位是分钟,低8 bits记录计数器数值counter
。
LFU配置
Redis
4.0之后为maxmemory_policy
淘汰策略添加了两个LFU
模式:
volatile-lfu
:对有过期时间的key采用LFU
淘汰算法allkeys-lfu
:对全部key采用LFU
淘汰算法
还有2个配置可以调整LFU
算法:
lfu-log-factor 10 lfu-decay-time 1
lfu-log-factor
可以调整计数器counter
的增长速度,lfu-log-factor
越大,counter
增长的越慢。
lfu-decay-time
是一个以分钟为单位的数值,可以调整counter
的减少速度
源码实现
在lookupKey
中:
robj *lookupKey(redisDb *db, robj *key, int flags) { dictEntry *de = dictFind(db->dict,key->ptr); if (de) { robj *val = dictGetVal(de); /* Update the access time for the ageing algorithm. * Don't do it if we have a saving child, as this will trigger * a copy on write madness. */ if (server.rdb_child_pid == -1 && server.aof_child_pid == -1 && !(flags & LOOKUP_NOTOUCH)) { if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) { updateLFU(val); } else { val->lru = LRU_CLOCK(); } } return val; } else { return NULL; } }
当采用LFU
策略时,updateLFU
更新LRU
:
/* Update LFU when an object is accessed. * Firstly, decrement the counter if the decrement time is reached. * Then logarithmically increment the counter, and update the access time. */ void updateLFU(robj *val) { unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter); val->lru = (LFUGetTimeInMinutes()<<8) | counter; }
降低LFUDecrAndReturn
首先,LFUDecrAndReturn
对counter
进行减少操作:
/* If the object decrement time is reached decrement the LFU counter but * do not update LFU fields of the object, we update the access time * and counter in an explicit way when the object is really accessed. * And we will times halve the counter according to the times of * elapsed time than server.lfu_decay_time. * Return the object frequency counter. * * This function is used in order to scan the dataset for the best object * to fit: as we check for the candidate, we incrementally decrement the * counter of the scanned objects if needed. */ unsigned long LFUDecrAndReturn(robj *o) { unsigned long ldt = o->lru >> 8; unsigned long counter = o->lru & 255; unsigned long num_periods = server.lfu_decay_time ? LFUTimeElapsed(ldt) / server.lfu_decay_time : 0; if (num_periods) counter = (num_periods > counter) ? 0 : counter - num_periods; return counter; }
函数首先取得高16 bits的最近降低时间ldt
与低8 bits的计数器counter
,然后根据配置的lfu_decay_time
计算应该降低多少。
LFUTimeElapsed
用来计算当前时间与ldt
的差值:
/* Return the current time in minutes, just taking the least significant * 16 bits. The returned time is suitable to be stored as LDT (last decrement * time) for the LFU implementation. */ unsigned long LFUGetTimeInMinutes(void) { return (server.unixtime/60) & 65535; } /* Given an object last access time, compute the minimum number of minutes * that elapsed since the last access. Handle overflow (ldt greater than * the current 16 bits minutes time) considering the time as wrapping * exactly once. */ unsigned long LFUTimeElapsed(unsigned long ldt) { unsigned long now = LFUGetTimeInMinutes(); if (now >= ldt) return now-ldt; return 65535-ldt+now; }
具体是当前时间转化成分钟数后取低16 bits,然后计算与ldt
的差值now-ldt
。当ldt > now
时,默认为过了一个周期(16 bits,最大65535),取值65535-ldt+now
。
然后用差值与配置lfu_decay_time
相除,LFUTimeElapsed(ldt) / server.lfu_decay_time
,已过去n个lfu_decay_time
,则将counter
减少n,counter - num_periods
。
增长LFULogIncr
增长函数LFULogIncr
如下:
/* Logarithmically increment a counter. The greater is the current counter value * the less likely is that it gets really implemented. Saturate it at 255. */ uint8_t LFULogIncr(uint8_t counter) { if (counter == 255) return 255; double r = (double)rand()/RAND_MAX; double baseval = counter - LFU_INIT_VAL; if (baseval < 0) baseval = 0; double p = 1.0/(baseval*server.lfu_log_factor+1); if (r < p) counter++; return counter; }
counter
并不是简单的访问一次就+1,而是采用了一个0-1之间的p因子控制增长。counter
最大值为255。取一个0-1之间的随机数r与p比较,当r<p
时,才增加counter
,这和比特币中控制产出的策略类似。p取决于当前counter
值与lfu_log_factor
因子,counter
值与lfu_log_factor
因子越大,p越小,r<p
的概率也越小,counter
增长的概率也就越小。增长情况如下:
+--------+------------+------------+------------+------------+------------+ | factor | 100 hits | 1000 hits | 100K hits | 1M hits | 10M hits | +--------+------------+------------+------------+------------+------------+ | 0 | 104 | 255 | 255 | 255 | 255 | +--------+------------+------------+------------+------------+------------+ | 1 | 18 | 49 | 255 | 255 | 255 | +--------+------------+------------+------------+------------+------------+ | 10 | 10 | 18 | 142 | 255 | 255 | +--------+------------+------------+------------+------------+------------+ | 100 | 8 | 11 | 49 | 143 | 255 | +--------+------------+------------+------------+------------+------------+
可见counter
增长与访问次数呈现对数增长的趋势,随着访问次数越来越大,counter
增长的越来越慢。
新生key策略
另外一个问题是,当创建新对象的时候,对象的counter
如果为0,很容易就会被淘汰掉,还需要为新生key设置一个初始counter
,createObject
:
robj *createObject(int type, void *ptr) { robj *o = zmalloc(sizeof(*o)); o->type = type; o->encoding = OBJ_ENCODING_RAW; o->ptr = ptr; o->refcount = 1; /* Set the LRU to the current lruclock (minutes resolution), or * alternatively the LFU counter. */ if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) { o->lru = (LFUGetTimeInMinutes()<<8) | LFU_INIT_VAL; } else { o->lru = LRU_CLOCK(); } return o; }
counter
会被初始化为LFU_INIT_VAL
,默认5。
pool
pool算法就与LRU
算法一致了:
if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) || server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
计算idle
时有所不同:
} else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) { /* When we use an LRU policy, we sort the keys by idle time * so that we expire keys starting from greater idle time. * However when the policy is an LFU one, we have a frequency * estimation, and we want to evict keys with lower frequency * first. So inside the pool we put objects using the inverted * frequency subtracting the actual frequency to the maximum * frequency of 255. */ idle = 255-LFUDecrAndReturn(o);
使用了255-LFUDecrAndReturn(o)
当做排序的依据。