深度学习篇——Tensorflow-GPU配置

tensoflow-gpu安装

对于python 3.5和3.6的童鞋们而言,安装tensorflow其实并不难,因为我们可以通过pip直接安装。

不过,第一要求你安装的python是64位的,如下图所示,注意划黄色线的部分。

深度学习篇——Tensorflow-GPU配置

python 位数确定

第二,通过pip安装的话,有一个缺点,那就是会造成cpu的算力不够,因为缺少两个C的库,不过没有影响的。如果你是一个完美主义者,那么就只能通过Bazel方式源码安装Tensorflow了。详细过程我之后会发布相关文章,可以留意一下☺。

深度学习篇——Tensorflow-GPU配置

pip 安装 Tensorflow-gpu

cuda配置

最新的Tensorflow-gpu 使用的是cuda 9.0.dll的内容,所以就要下载cuda 9.0对应window或者linux或者mac的版本的安装文件了。(下载网站:https://developer.nvidia.com/cuda-90-download-archive)

深度学习篇——Tensorflow-GPU配置

下载界面

我的电脑是window10,所以就选择如图所示的选项。主要的提一点,就是最后的Installer Type这个选项,exe(network)是在线安装版,也就是你执行这个安装程序,需要联网。exe(local)是离线安装版,不过他文件比较大。选完后,点击下面的download就行下载。

深度学习篇——Tensorflow-GPU配置

exe(network)线安装版

深度学习篇——Tensorflow-GPU配置

exe(local)离线安装版

下载完成后,双击运行文件

深度学习篇——Tensorflow-GPU配置

选择 ok

等进度条走完,就会进入安装界面。

深度学习篇——Tensorflow-GPU配置

安装加载界面

深度学习篇——Tensorflow-GPU配置

检查系统兼容性,等一下就好

如果检测通过了,那么恭喜你,你的显卡可以安装cuda,如果没有通过,只能抱歉的告诉你,只能请你pip unistall tensorflow-gpu,然后执行pip install tensorflow。那你的电脑的显卡不支持tensorflow-gpu加速。

深度学习篇——Tensorflow-GPU配置

点击 同意并继续

如果你不知道你要安装些什么,那么请你勾选,精简。如果

深度学习篇——Tensorflow-GPU配置

勾选精简,然后点击下一步

深度学习篇——Tensorflow-GPU配置

等待安装完成

深度学习篇——Tensorflow-GPU配置

选择 下一步

深度学习篇——Tensorflow-GPU配置

全部勾选 ,点击关闭

下面这一步很重要:

CUDA_PATH是C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0但是仅仅如此,是不够的,还需要在环境变量里的path全局变量里加入,这个下面的bin和lib\\x64目录的路径。

cudnn配置

对于tensorflow而言,真正实现加速的是cudnn,然后cudnn调用的是cuda显卡驱动。所以最后我们要配置cudnn这个模块。

cuDNN的全称为NVIDIA CUDA® Deep Neural Network library,是NVIDIA专门针对深度神经网络(Deep Neural Networks)中的基础操作而设计基于GPU的加速库。cuDNN为深度神经网络中的标准流程提供了高度优化的实现方式,例如convolution、pooling、normalization以及activation layers的前向以及后向过程。

cuDNN只是NVIDIA深度神经网络软件开发包中的其中一种加速库。想了解NVIDIA深度神经网络加速库中的其他包请戳链接https://developer.nvidia.com/deep-learning-software。

下面我们说一下正确的安装cuDNN方式,其实跟着官方安装说明进行安装就可以了。

  1. 从https://developer.nvidia.com/cudnn上下载cudnn相应版本的压缩包(可能需要注册或登录)。

  2. 如果这个压缩包不是.tgz格式的,把这个压缩包重命名为.tgz格式。解压当前的.tgz格式的软件包到系统中的任意路径,解压后的文件夹名为cuda,文件夹中包含三个文件夹:一个为include,另一个为lib64,还有一个是bin,然后复制到CUDA_PATH下面。

  3. 将解压后的文件中的lib/x64文件夹关联到环境变量中。这一步很重要。(配置到环境变量的path全局变量里,详细过程这里就不演示了)

深度学习篇——Tensorflow-GPU配置

复制目录的位置

运行tensorflow检验

#coding=utf-8

import tensorflow as tf

import numpy as np

hello=tf.constant('hhh')

sess=tf.Session()

print (sess.run(hello))

如果运行,没有报错,就是表示可以放烟花了。我们可以愉快的开始tensorflow之旅了。

cuda、cudnn资源分享(百度网盘)

链接:https://pan.baidu.com/s/1pYBOe1M2pFHQUAZ8A5uwgw 密码:thji

可能会失效,如果失效,请在下方评论。

相关推荐