【python基础】生成器&迭代器
一、生成器:generator
按照规则去生成一定的数据
1、列表推导式和生成器的区别
列表推导式: 一次性生成所有满足条件的数据
生成器: 你要一个数据, 我生成出来给你一个
2、生成器表达式
生成器对象 = (表达式 for item in 容器)
生成器对象 = (表达式 for item in 容器 if 条件)
生成器对象 = (表达式 for item in 容器 for item2 in 容器2)
3、通过生成器对象获取数据
(1)next(g)
(2)for in 依次获取生成器对象中的每个数据
(3) g.__next__()
(4)send(值):给上一次生成器函数中yield的位置传递一个值
第一次获取生成器数据时, 不能使用send()方法获取
# 1、生成1-10的数据的生成器 g = (x for x in range(1, 11)) print(type(g)) # <class ‘generator‘> print(g) # <generator object <genexpr> at 0x00000000007EA948> print(next(g)) # 1 获取g对象的数据 print(next(g)) # 2 print(next(g)) # 3 print(next(g)) # 4 for x in g: print(x) # 5, 6, 7, 8, 9, 10 # print(next(g)) # StopIteration # 2、创建一个生成器对象, 包含1-10之间的所有偶数 g1 = (x for x in range(1, 11) if x % 2 == 0) print(g1) # <generator object <genexpr> at 0x000000000260A948> print(type(g1)) # <class ‘generator‘> print(g1.__next__()) # 2 print(g1.__next__()) # 4 print(g1.__next__()) # 6 print(g1.__next__()) # 8 print(g1.__next__()) # 10 # print(g1.__next__()) # StopIteration
二、生成器函数
1、关键字yield 的作用
1、返回一个数据,如果yield后边啥也没有,返回数据为None
2、遇到yield获取一条数据,同时暂停函数的执行,直到下一次获取数据时,从暂停的位置继续往下执行
2、特点
1、生成器函数用来生成一个生成器对象
2、生成器函数中的代码在获取对象数据时,才会被执行
def func1(): print("我是生成器") yield # return 返回值 g = func1() print(g) # <generator object func1 at 0x0000000003C2CFC0> print(type(g)) # <class ‘generator‘> # 获取生成器对象数据的三种方式: 1, next(对象); 2,for..in 对象; 3. 对象.__next__() print(next(g)) # 我是生成器 \n None def func2(): print("我是生成器") yield 0000 # step1: 获取生成器对象 g2 = func2() # step2: 获取数据 print(g2.__next__()) """ 我是生成器 0 """ # print(g2.__next__()) # StopIteration def func3(): print("xixi") yield "haha" print("hanhan") yield "daidai" g3 = func3() print(g3.__next__()) """ xixi haha """ print(g3.__next__()) # 三角龙 """ hanhan daidai """ def func4(): for x in range(10): yield "我是第%d" % x g4 = func4() print(next(g4)) # 我是第0 print(next(g4)) # 我是第1 print(next(g4)) # 我是第2 print(next(g4)) # 我是第3 def func5(): print("我是第5个生成器函数") child = yield "请给我xixi" print("taotao&huihui") yield child g5 = func5() # next(g5) # "请给我一只食肉龙" print(g5.__next__()) # 1. 获取一个生成器的数据 """ 我是第5个生成器函数 请给我xixi """ # TypeError: can‘t send non-None value to a just-started generator print(g5.send("haha")) # 2. 给生成器函数上一个yield的位置传递一个数据(霸王龙) """ taotao&huihui haha """ # print(next(g5)) # print(g5.send("abc")) # StopIteration
三、生成器实例
# 1、传递数据, 计算所有传递的数据的总和,平均值 def func1(): sum_num = 0 # 用来记录所有数字的和, 初始值0 count = 0 avg = 0 # 用来记录所有数字的平均值, 初始值0 while True: num = yield (sum_num, avg) count += 1 # 每输入一个数据, 计数+1 sum_num += num # 每输入一个数据, 和累加 avg = sum_num / count g1 = func1() print(g1.__next__()) # (0, 0) print(g1.send(5)) # (5, 5.0) print(g1.send(10)) # (15, 7.5) print(g1.send(100)) # (115, 38,33333333) # 2、写一个生成器, 生成斐波那契数列; # 1, 1, 2, 3, 5, 8, 13, 21, ... # a b->2 # a b->3 def func2(): a = 1 # 所求数的前两个数 b = 1 # 所求数的前一个数 while True: yield a # 1, 1, 2, 3, 5,... a, b = b, a + b g2 = func2() print(g2.__next__()) # 1 print(g2.__next__()) # 1 print(g2.__next__()) # 2 print(g2.__next__()) # 3 print(g2.__next__()) # 5 print(g2.__next__()) # 8 print(g2.__next__()) # 11
四、为什么生成器是迭代器
1、概念
(1)可迭代对象: 实现了__iter__方法的对象就是可迭代对象
(2)迭代器: 实现了__iter__方法和__next__方法的对象就是迭代器
(3)生成器:函数中使用了关键字 yield
2、关联
(1)迭代器 是 可迭代对象
(2)生成器 是 可迭代对象
(3)生成器 是 迭代器
__iter__()方法的返回值是 迭代器
可迭代对象.__iter__(),就会生成一个 迭代器
3、判断对象是否可迭代
from collections.abc import Iterable
isinstance(对象,Iterable)
4、for in 的底层原理
for in 对象
(1)调用对象的__iter__()方法,生成一个iterator迭代器
(2)调用迭代器对象的__next__()方法,依次获取每个数据
(3)for in 在遇到 StopIteration 时,停止迭代
# 写个迭代器, 传入一个范围(起始值, 终止值), 依次获取 # 这个范围中的素数 class PrimeNumber: def __init__(self, start, end): self.start = start self.end = end # 方法: 判断一个数是不是素数 def isPrimeNumber(self, num): # 参数: 你要判断是不是素数的那个数 for x in range(2, num): if num % x == 0: return False # 返回, 函数停止执行 return True def __iter__(self): # 返回个迭代器对象: generator(迭代器)--> __iter__(), __next__() for x in range(self.start, self.end + 1): if self.isPrimeNumber(x): yield x # yield --> 生成器函数(返回值:生成器) --> 迭代器 --> __iter__()方法返回个迭代器 n3 = PrimeNumber(3, 20) for x in n3: print(x) """ 3 5 7 11 13 17 19 """ # step1: 调用__iter__()获取迭代器 --> 生成器 # step2: 调用__next__()获取数据 # step3: StopIteration停止迭代 n4 = PrimeNumber(3, 20) g4 = n4.__iter__() print(g4.__next__()) # 3
g = (x for x in range(10)) print(g) # <generator object <genexpr> at 0x0000000003C2CFC0> print(dir(g)) # 查看g的所有方法 def func(): yield "xixi" g1 = func() print(g1) # <generator object func at 0x000000000212A548> print(g1.__next__()) # ‘xixi‘
相关推荐
Andrewjdw 2020-07-26
czsay 2020-06-01
RocNg 2020-04-18
assastor 2020-03-20
AndroidAmelia 2020-03-01
Yasin 2020-01-30
kikaylee 2020-01-20
kkpiece 2020-03-25
容数据服务集结号 2020-02-22
JnX 2020-09-21
joyjoy0 2020-09-18
Jan 2020-08-17
shenxiuwen 2020-08-01
fanhuasijin 2020-06-21
丽丽 2020-06-08
容数据服务集结号 2020-06-08
程序员之怒 2020-04-26
wmsjlihuan 2020-04-26