【ElasticSearch】 全文搜索(七)

全文搜索介绍

全文搜索两个最重要的方面是:

  • 相关性(Relevance) 它是评价查询与其结果间的相关程度,并根据这种相关程度对结果排名的一种能力,这 种计算方式可以是 TF/IDF 方法、地理位置邻近、模糊相似,或其他的某些算法。
  • 分词(Analysis) 它是将文本块转换为有区别的、规范化的 token 的一个过程,目的是为了创建倒排索引以及 查询倒排索引。

数据准备

本例使用ES版本为7.6.1

1、创建索引

PUT /user

{
    "settings": {
        "index": {
            "number_of_shards": "1",
            "number_of_replicas": "0"
        }
    },
    "mappings": {
        "properties": {
            "name": {
                "type": "text"
            },
            "age": {
                "type": "integer"
            },
            "mail": {
                "type": "keyword"
            },
            "hobby": {
                "type": "text",
                "analyzer": "ik_max_word"
            }
        }
    }
}

2、插入数据

POST /user/_bulk

{"index":{"_index":"user"}
{"name":"张三","age": 20,"mail": "","hobby":"羽毛球、乒乓球、足球"} 
{"index":{"_index":"user"}
{"name":"李四","age": 21,"mail": "","hobby":"羽毛球、乒乓球、足球、篮球"} 
{"index":{"_index":"user"}
{"name":"王五","age": 22,"mail": "","hobby":"羽毛球、篮球、游泳、听音乐"} 
{"index":{"_index":"user"}
{"name":"赵六","age": 23,"mail": "","hobby":"跑步、游泳、篮球"} 
{"index":{"_index":"user"}
{"name":"孙七","age": 24,"mail": "","hobby":"听音乐、看电影、羽毛球"}

3、效果如下:

  【ElasticSearch】 全文搜索(七)

搜索

1、单词搜索

示例:

POST /user/_search

{
    "query": {
        "match": {
            "hobby": "音乐"
        }
    },
    "highlight": {
        "fields": {
            "hobby": {}
        }
    }
}

效果如下:

【ElasticSearch】 全文搜索(七)

过程说明:

  1. 检查字段类型
    爱好 hobby 字段是一个 text 类型( 指定了IK分词器),这意味着查询字符串本身也应该被分词。

  2. 分析查询字符串 。
    将查询的字符串 “音乐” 传入IK分词器中,输出的结果是单个项 音乐。因为只有一个单词项,所以 match 查询执行的是单个底层 term 查询。

  3. 查找匹配文档 。
    用 term 查询在倒排索引中查找 “音乐” 然后获取一组包含该项的文档,本例的结果是文档:3 、5 。

  4. 为每个文档评分 。
    用 term 查询计算每个文档相关度评分 _score ,这是种将 词频(term frequency,即词 “音乐” 在相关文档的 hobby 字段中出现的频率)和
    反向文档频率(inverse document frequency,即词 “音乐” 在所有文档的 hobby 字段中出现的频率),
    以及字段的长度(即字段越短相关度越高)相结合的计算方式。

2、多词搜索

示例:

POST /user/_search

{
    "query": {
        "match": {
            "hobby": "音乐 篮球"
        }
    },
    "highlight": {
        "fields": {
            "hobby": {}
        }
    }
}

效果如下:

【ElasticSearch】 全文搜索(七)

可以看到,包含了“音乐”、“篮球”的数据都已经被搜索到了。 可是,搜索的结果并不符合我们的预期,因为我们想搜索的是既包含“音乐”又包含“篮球”的用户,显然结果返回

的“或”的关系。

在Elasticsearch中,可以指定词之间的逻辑关系,如下:

and关系示例:

POST /user/_search

{
    "query": {
        "match": {
            "hobby": {
                "query": "音乐 篮球",
                "operator": "and"
            }
        }
    },
    "highlight": {
        "fields": {
            "hobby": {}
        }
    }
}

or关系示例:

POST /user/_search

{
    "query": {
        "match": {
            "hobby": {
                "query": "音乐 篮球",
                "operator": "or"
            }
        }
    },
    "highlight": {
        "fields": {
            "hobby": {}
        }
    }
}

前面我们测试了“OR” 和 “AND”搜索,这是两个极端,其实在实际场景中,并不会选取这2个极端,更有可能是选取这 种,或者说,只需要符合一定的相似度就可以查询到数据,在Elasticsearch中也支持这样的查询,通过 minimum_should_match来指定匹配度,如:70%;

minimum_should_match关系示例

POST /user/_search

{
    "query": {
        "match": {
            "hobby": {
                "query": "音乐 篮球",
                "minimum_should_match": "80%"
            }
        }
    },
    "highlight": {
        "fields": {
            "hobby": {}
        }
    }
}

   相似度应该多少合适,需要在实际的需求中进行反复测试,才可得到合理的值。

3、组合搜索

在搜索时,也可以使用过滤器中讲过的bool组合查询,示例:

POST /user/_search

{
    "query": {
        "bool": {
            "must": {
                "match": {
                    "hobby": "篮球"
                }
            },
            "must_not": {
                "match": {
                    "hobby": "音乐"
                }
            },
            "should": [
                {
                    "match": {
                        "hobby": "游泳"
                    }
                }
            ]
        }
    },
    "highlight": {
        "fields": {
            "hobby": {}
        }
    }
}

上面搜索的意思是:

  搜索结果中必须包含篮球,不能包含音乐,如果包含了游泳,那么它的相似度更高。

效果如下:

  【ElasticSearch】 全文搜索(七)

评分的计算规则

  bool 查询会为每个文档计算相关度评分 _score , 再将所有匹配的 must 和 should 语句的分数 _score 求和,最后除以 must 和 should 语句的总数。

  must_not 语句不会影响评分; 它的作用只是将不相关的文档排除。

   默认情况下,should中的内容不是必须匹配的,如果查询语句中没有must,那么就会至少匹配其中一个。

当然了, 也可以通过minimum_should_match参数进行控制,该值可以是数字也可以的百分比。

4、权重

有些时候,我们可能需要对某些词增加权重来影响该条数据的得分。如下:

搜索关键字为“游泳篮球”,如果结果中包含了“音乐”权重为10,包含了“跑步”权重为2。

POST /user/_search

{
    "query": {
        "bool": {
            "must": {
                "match": {
                    "hobby": {
                        "query": "游泳篮球",
                        "operator": "and"
                    }
                }
            },
            "should": [
                {
                    "match": {
                        "hobby": {
                            "query": "音乐",
                            "boost": 10
                        }
                    }
                },
                {
                    "match": {
                        "hobby": {
                            "query": "跑步",
                            "boost": 2
                        }
                    }
                }
            ]
        }
    },
    "highlight": {
        "fields": {
            "hobby": {}
        }
    }
}

效果如下:

【ElasticSearch】 全文搜索(七)

相关推荐