Kafka部署与代码实例

    kafka作为分布式日志收集或系统监控服务,我们有必要在合适的场合使用它。kafka的部署包括zookeeper环境/kafka环境,同时还需要进行一些配置操作.接下来介绍如何使用kafka.

    我们使用3个zookeeper实例构建zk集群,使用2个kafka broker构建kafka集群.

    其中kafka为0.8V,zookeeper为3.4.5V

一.Zookeeper集群构建

    我们有3个zk实例,分别为zk-0,zk-1,zk-2;如果你仅仅是测试使用,可以使用1个zk实例.(本示例基于伪分布式部署)

    1) zk-0

    调整配置文件:

clientPort=2181
server.0=127.0.0.1:2888:3888
server.1=127.0.0.1:2889:3889
server.2=127.0.0.1:2890:3890
##只需要修改上述配置,其他配置保留默认值

    启动zookeeper

./zkServer.sh start

    2) zk-1

    调整配置文件(其他配置和zk-0一只):

clientPort=2182
##只需要修改上述配置,其他配置保留默认值

    启动zookeeper

./zkServer.sh start

    3) zk-2

    调整配置文件(其他配置和zk-0一只):

clientPort=2183
##只需要修改上述配置,其他配置保留默认值

    启动zookeeper

./zkServer.sh start

  

二. Kafka集群构建

    因为Broker配置文件涉及到zookeeper的相关约定,因此我们先展示broker配置文件.我们使用2个kafka broker来构建这个集群环境,分别为kafka-0,kafka-1.

    1) kafka-0

    在config目录下修改配置文件为:

broker.id=0
port=9092
num.network.threads=2
num.io.threads=2
socket.send.buffer.bytes=1048576
socket.receive.buffer.bytes=1048576
socket.request.max.bytes=104857600
log.dir=./logs
num.partitions=2
log.flush.interval.messages=10000
log.flush.interval.ms=1000
log.retention.hours=168
#log.retention.bytes=1073741824
log.segment.bytes=536870912
##replication机制,让每个topic的partitions在kafka-cluster中备份2个
##用来提高cluster的容错能力..
default.replication.factor=1
log.cleanup.interval.mins=10
##zookeeper.connect指定zookeeper的地址,默认情况下将会在zk的“/”目录下
##创建meta信息和路径,为了对znode进行归类,我们可以在connect之后追加路径,比如
##127.0.0.1:2183/kafka
##不过需要注意,此后的producer、consumer都需要带上此根路径
zookeeper.connect=127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183
zookeeper.connection.timeout.ms=1000000

    因为kafka用scala语言编写,因此运行kafka需要首先准备scala相关环境。

> cd kafka-0
> ./sbt update
> ./sbt package
> ./sbt assembly-package-dependency

    其中最后一条指令执行有可能出现异常,暂且不管。 启动kafka broker:

> JMS_PORT=9997 bin/kafka-server-start.sh config/server.properties &

    因为zookeeper环境已经正常运行了,我们无需通过kafka来挂载启动zookeeper.如果你的一台机器上部署了多个kafka broker,你需要声明JMS_PORT.

    2) kafka-1

broker.id=1
port=9093
##其他配置和kafka-0保持一致

    然后和kafka-0一样执行打包命令,然后启动此broker.

> JMS_PORT=9998 bin/kafka-server-start.sh config/server.properties &

    仍然可以通过如下指令查看topic的"partition"/"replicas"的分布和存活情况.

> bin/kafka-list-topic.sh --zookeeper localhost:2181
topic: my-replicated-topic	partition: 0	leader: 2	replicas: 1,2,0	isr: 2
topic: test	partition: 0	leader: 0	replicas: 0	isr: 0 

    到目前为止环境已经OK了,那我们就开始展示编程实例吧。[配置参数详解]

三.项目准备

    项目基于maven构建,不得不说kafka java客户端实在是太糟糕了;构建环境会遇到很多麻烦。建议参考如下pom.xml;其中各个依赖包必须版本协调一致。如果kafka client的版本和kafka server的版本不一致,将会有很多异常,比如"broker id not exists"等;因为kafka从0.7升级到0.8之后(正名为2.8.0),client与server通讯的protocol已经改变.

<dependencies>
	<dependency>
		<groupId>log4j</groupId>
		<artifactId>log4j</artifactId>
		<version>1.2.14</version>
	</dependency>
	<dependency>
		<groupId>org.apache.kafka</groupId>
		<artifactId>kafka_2.8.2</artifactId>
		<version>0.8.0</version>
		<exclusions>
			<exclusion>
				<groupId>log4j</groupId>
				<artifactId>log4j</artifactId>
			</exclusion>
		</exclusions>
	</dependency>
	<dependency>
		<groupId>org.scala-lang</groupId>
		<artifactId>scala-library</artifactId>
		<version>2.8.2</version>
	</dependency>
	<dependency>
		<groupId>com.yammer.metrics</groupId>
		<artifactId>metrics-core</artifactId>
		<version>2.2.0</version>
	</dependency>
	<dependency>
		<groupId>com.101tec</groupId>
		<artifactId>zkclient</artifactId>
		<version>0.3</version>
	</dependency>
</dependencies>

四.Producer端代码

    1) producer.properties文件:此文件放在/resources目录下

#partitioner.class=
##broker列表可以为kafka server的子集,因为producer需要从broker中获取metadata
##尽管每个broker都可以提供metadata,此处还是建议,将所有broker都列举出来
##此值,我们可以在spring中注入过来
##metadata.broker.list=127.0.0.1:9092,127.0.0.1:9093
##,127.0.0.1:9093
##同步,建议为async
producer.type=sync
compression.codec=0
serializer.class=kafka.serializer.StringEncoder
##在producer.type=async时有效
#batch.num.messages=100

    2) KafkaProducerClient.java代码样例

import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import java.util.Properties;

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;

/**
 * User: guanqing-liu
 */
public class KafkaProducerClient {

	private Producer<String, String> inner;
	
	private String brokerList;//for metadata discovery,spring setter
	private String location = "kafka-producer.properties";//spring setter
	
	private String defaultTopic;//spring setter

	public void setBrokerList(String brokerList) {
		this.brokerList = brokerList;
	}

	public void setLocation(String location) {
		this.location = location;
	}

	public void setDefaultTopic(String defaultTopic) {
		this.defaultTopic = defaultTopic;
	}

	public KafkaProducerClient(){}
	
	public void init() throws Exception {
		Properties properties = new Properties();
		properties.load(Thread.currentThread().getContextClassLoader().getResourceAsStream(location));
		
		
		if(brokerList != null) {
			properties.put("metadata.broker.list", brokerList);
		}

		ProducerConfig config = new ProducerConfig(properties);
		inner = new Producer<String, String>(config);
	}

	public void send(String message){
		send(defaultTopic,message);
	}
	
	public void send(Collection<String> messages){
		send(defaultTopic,messages);
	}
	
	public void send(String topicName, String message) {
		if (topicName == null || message == null) {
			return;
		}
		KeyedMessage<String, String> km = new KeyedMessage<String, String>(topicName,message);
		inner.send(km);
	}

	public void send(String topicName, Collection<String> messages) {
		if (topicName == null || messages == null) {
			return;
		}
		if (messages.isEmpty()) {
			return;
		}
		List<KeyedMessage<String, String>> kms = new ArrayList<KeyedMessage<String, String>>();
		int i= 0;
		for (String entry : messages) {
			KeyedMessage<String, String> km = new KeyedMessage<String, String>(topicName,entry);
			kms.add(km);
			i++;
			if(i % 20 == 0){
				inner.send(kms);
				kms.clear();
			}
		}
		
		if(!kms.isEmpty()){
			inner.send(kms);
		}
	}

	public void close() {
		inner.close();
	}

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		KafkaProducerClient producer = null;
		try {
			producer = new KafkaProducerClient();
			//producer.setBrokerList("");
			int i = 0;
			while (true) {
				producer.send("test-topic", "this is a sample" + i);
				i++;
				Thread.sleep(2000);
			}
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			if (producer != null) {
				producer.close();
			}
		}

	}

}

    3) spring配置

<bean id="kafkaProducerClient" class="com.test.kafka.KafkaProducerClient" init-method="init" destroy-method="close">
        <property name="zkConnect" value="${zookeeper_cluster}"></property>
        <property name="defaultTopic" value="${kafka_topic}"></property>
    </bean>

五.Consumer端

     1) consumer.properties:文件位于/resources目录下

## 此值可以配置,也可以通过spring注入
##zookeeper.connect=127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183
##,127.0.0.1:2182,127.0.0.1:2183
# timeout in ms for connecting to zookeeper
zookeeper.connectiontimeout.ms=1000000
#consumer group id
group.id=test-group
#consumer timeout
#consumer.timeout.ms=5000
auto.commit.enable=true
auto.commit.interval.ms=60000

    2) KafkaConsumerClient.java代码样例

package com.test.kafka;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.charset.Charset;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.message.Message;
import kafka.message.MessageAndMetadata;

/**
 * User: guanqing-liu 
 */
public class KafkaConsumerClient {

	private String groupid; //can be setting by spring
	private String zkConnect;//can be setting by spring
	private String location = "kafka-consumer.properties";//配置文件位置
	private String topic;
	private int partitionsNum = 1;
	private MessageExecutor executor; //message listener
	private ExecutorService threadPool;
	
	private ConsumerConnector connector;
	
	private Charset charset = Charset.forName("utf8");

	public void setGroupid(String groupid) {
		this.groupid = groupid;
	}

	public void setZkConnect(String zkConnect) {
		this.zkConnect = zkConnect;
	}

	public void setLocation(String location) {
		this.location = location;
	}

	public void setTopic(String topic) {
		this.topic = topic;
	}

	public void setPartitionsNum(int partitionsNum) {
		this.partitionsNum = partitionsNum;
	}

	public void setExecutor(MessageExecutor executor) {
		this.executor = executor;
	}

	public KafkaConsumerClient() {}

	//init consumer,and start connection and listener
	public void init() throws Exception {
		if(executor == null){
			throw new RuntimeException("KafkaConsumer,exectuor cant be null!");
		}
		Properties properties = new Properties();
		properties.load(Thread.currentThread().getContextClassLoader().getResourceAsStream(location));
		
		if(groupid != null){
			properties.put("groupid", groupid);
		}
		if(zkConnect != null){
			properties.put("zookeeper.connect", zkConnect);
		}
		ConsumerConfig config = new ConsumerConfig(properties);

		connector = Consumer.createJavaConsumerConnector(config);
		Map<String, Integer> topics = new HashMap<String, Integer>();
		topics.put(topic, partitionsNum);
		Map<String, List<KafkaStream<byte[], byte[]>>> streams = connector.createMessageStreams(topics);
		List<KafkaStream<byte[], byte[]>> partitions = streams.get(topic);
		threadPool = Executors.newFixedThreadPool(partitionsNum * 2);
		
		//start
		for (KafkaStream<byte[], byte[]> partition : partitions) {
			threadPool.execute(new MessageRunner(partition));
		}
	}

	public void close() {
		try {
			threadPool.shutdownNow();
		} catch (Exception e) {
			//
		} finally {
			connector.shutdown();
		}

	}

	class MessageRunner implements Runnable {
		private KafkaStream<byte[], byte[]> partition;

		MessageRunner(KafkaStream<byte[], byte[]> partition) {
			this.partition = partition;
		}

		public void run() {
			ConsumerIterator<byte[], byte[]> it = partition.iterator();
			while (it.hasNext()) {
				// connector.commitOffsets();手动提交offset,当autocommit.enable=false时使用
				MessageAndMetadata<byte[], byte[]> item = it.next();
				try{
					executor.execute(new String(item.message(),charset));// UTF-8,注意异常
				}catch(Exception e){
					//
				}
			}
		}
		
		public String getContent(Message message){
            ByteBuffer buffer = message.payload();
            if (buffer.remaining() == 0) {
                return null;
            }
            CharBuffer charBuffer = charset.decode(buffer);
            return charBuffer.toString();
		}
	}

	public static interface MessageExecutor {

		public void execute(String message);
	}

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		KafkaConsumerClient consumer = null;
		try {
			MessageExecutor executor = new MessageExecutor() {

				public void execute(String message) {
					System.out.println(message);
				}
			};
			consumer = new KafkaConsumerClient();
			
			consumer.setTopic("test-topic");
			consumer.setPartitionsNum(2);
			consumer.setExecutor(executor);
			consumer.init();
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			 if(consumer != null){
				 consumer.close();
			 }
		}

	}

}

    3) spring配置(略)

    需要提醒的是,上述LogConsumer类中,没有太多的关注异常情况,必须在MessageExecutor.execute()方法中抛出异常时的情况.

    在测试时,建议优先启动consumer,然后再启动producer,这样可以实时的观测到最新的消息。

相关推荐