KAFKA分布式消息系统
Kafka[1]是linkedin用于日志处理的分布式消息队列,linkedin的日志数据容量大,但对可靠性要求不高,其日志数据主要包括用户行为(登录、浏览、点击、分享、喜欢)以及系统运行日志(CPU、内存、磁盘、网络、系统及进程状态)。
当前很多的消息队列服务提供可靠交付保证,并默认是即时消费(不适合离线)。高可靠交付对linkedin的日志不是必须的,故可通过降低可靠性来提高性能,同时通过构建分布式的集群,允许消息在系统中累积,使得kafka同时支持离线和在线日志处理。
注:本文中发布者(publisher)与生产者(producer)可以互换,订阅者(subscriber)与消费者(consumer)可以互换。
Kafka的架构如下图所示:
Kafka存储策略
1.kafka以topic来进行消息管理,每个topic包含多个part(ition),每个part对应一个逻辑log,有多个segment组成。
2.每个segment中存储多条消息(见下图),消息id由其逻辑位置决定,即从消息id可直接定位到消息的存储位置,避免id到位置的额外映射。
3.每个part在内存中对应一个index,记录每个segment中的第一条消息偏移。
4.发布者发到某个topic的消息会被均匀的分布到多个part上(随机或根据用户指定的回调函数进行分布),broker收到发布消息往对应part的最后一个segment上添加该消息,当某个segment上的消息条数达到配置值或消息发布时间超过阈值时,segment上的消息会被flush到磁盘,只有flush到磁盘上的消息订阅者才能订阅到,segment达到一定的大小后将不会再往该segment写数据,broker会创建新的segment。
发布与订阅接口
发布消息时,kafkaclient先构造一条消息,将消息加入到消息集set中(kafka支持批量发布,可以往消息集合中添加多条消息,一次行发布),send消息时,client需指定消息所属的topic。
订阅消息时,kafkaclient需指定topic以及partitionnum(每个partition对应一个逻辑日志流,如topic代表某个产品线,partition代表产品线的日志按天切分的结果),client订阅后,就可迭代读取消息,如果没有消息,client会阻塞直到有新的消息发布。consumer可以累积确认接收到的消息,当其确认了某个offset的消息,意味着之前的消息也都已成功接收到,此时broker会更新zookeeper上地offsetregistry(后面会讲到)。
高效的数据传输
1.发布者每次可发布多条消息(将消息加到一个消息集合中发布),sub每次迭代一条消息。
2.不创建单独的cache,使用系统的pagecache。发布者顺序发布,订阅者通常比发布者滞后一点点,直接使用linux的pagecache效果也比较后,同时减少了cache管理及垃圾收集的开销。
3.使用sendfile优化网络传输,减少一次内存拷贝。
无状态broker
1.Broker没有副本机制,一旦broker宕机,该broker的消息将都不可用。
2.Broker不保存订阅者的状态,由订阅者自己保存。
3.无状态导致消息的删除成为难题(可能删除的消息正在被订阅),kafka采用基于时间的SLA(服务水平保证),消息保存一定时间(通常为7天)后会被删除。
4.消息订阅者可以rewindback到任意位置重新进行消费,当订阅者故障时,可以选择最小的offset进行重新读取消费消息。
Consumergroup
1.允许consumergroup(包含多个consumer,如一个集群同时消费)对一个topic进行消费,不同的consumergroup之间独立订阅。
2.为了对减小一个consumergroup中不同consumer之间的分布式协调开销,指定partition为最小的并行消费单位,即一个group内的consumer只能消费不同的partition。
Zookeeper协调控制
1.管理broker与consumer的动态加入与离开。
2.触发负载均衡,当broker或consumer加入或离开时会触发负载均衡算法,使得一
个consumergroup内的多个consumer的订阅负载平衡。
3.维护消费关系及每个partion的消费信息。
Zookeeper上的细节:
1.每个broker启动后会在zookeeper上注册一个临时的brokerregistry,包含broker的ip地址和端口号,所存储的topics和partitions信息。
2.每个consumer启动后会在zookeeper上注册一个临时的consumerregistry:包含consumer所属的consumergroup以及订阅的topics。
3.每个consumergroup关联一个临时的ownerregistry和一个持久的offsetregistry。对于被订阅的每个partition包含一个ownerregistry,内容为订阅这个partition的consumerid;同时包含一个offsetregistry,内容为上一次订阅的offset。
消息交付保证
1.kafka对消息的重复、丢失、错误以及顺序型没有严格的要求。
2.kafka提供at-least-oncedelivery,即当consumer宕机后,有些消息可能会被重复delivery。
3.因每个partition只会被consumergroup内的一个consumer消费,故kafka保证每个partition内的消息会被顺序的订阅。
4.Kafka为每条消息为每条消息计算CRC校验,用于错误检测,crc校验不通过的消息会直接被丢弃掉。
Linkedin的应用环境
如下图,左边的应用于日志数据的在线实时处理,右边的应用于日志数据的离线分析(现将日志pull至hadoop或DWH中)。
Kafka的性能
测试环境:2Linuxmachines,eachwith82GHzcores,16GBofmemory,6diskswithRAID10.Thetwomachinesareconnectedwitha1Gbnetworklink.Oneofthemachineswasusedasthebrokerandtheothermachinewasusedastheproducerortheconsumer.
测试评价(byme):(1)环境过于简单,不足以说明问题。(2)对于producer持续的波动没有进行分析。(3)只有两台机器zookeeper都省了??
测试结果:如下图,完胜其他的messagequeue,单条消息发送(每条200bytes),能到50000messages/sec,50条batch方式发送,平均为400000messages/sec.
Kafka未来研究方向
1.数据压缩(节省网络带宽及存储空间)
2.Broker多副本
3.流式处理应用
参考资料
【1】http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf
【2】https://cwiki.apache.org/KAFKA/kafka-papers-and-presentations.data/Kafka-netdb-06-2011.pdf
http://blog.chinaunix.net/uid-20196318-id-2420884.html