tensorflow 将训练模型保存为pd文件
前言
保存 模型有2种方法:
方法
1.使用TensorFlow模型保存函数
save = tf.train.Saver() ...... saver.save(sess,"checkpoint/model.ckpt",global_step=step)*
得到3个结果
model.ckpt-129220.data-00000-of-00001#保存了模型的所有变量的值。 model.ckpt-129220.index model.ckpt-129220.meta # 保存了graph结构,包括GraphDef, SaverDef等。存在时,可以不在文件中定义模型,也可以运行
再将这3个文件保存为.pd文件
import tensorflow as tf import deeplab_model def export_graph(model, checkpoint_dir, model_name): ... model: the defined model checkpoint_dir: the dir of three files model_name: the name of .pb ... graph = tf.Graph() with graph.as_default(): ### 输入占位符 input_img = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_image') labels = tf.zeros([1, 512, 512,1]) labels = tf.to_int32(tf.image.convert_image_dtype(labels, dtype=tf.uint8)) ### 需要输出的Tensor output = model.deeplabv3_plus_model_fn( input_img, labels, tf.estimator.ModeKeys.EVAL, params={ 'output_stride': 16, 'batch_size': 1, # Batch size must be 1 because the images' size may differ 'base_architecture': 'resnet_v2_50', 'pre_trained_model': None, 'batch_norm_decay': None, 'num_classes': 2, 'freeze_batch_norm': True }).predictions['classes'] ### 给输出的tensor命名 output = tf.identity(output, name='output_label') restore_saver = tf.train.Saver() with tf.Session(graph=graph) as sess: ### 初始化变量 sess.run(tf.global_variables_initializer()) ### load the model restore_saver.restore(sess, checkpoint_dir) output_graph_def = tf.graph_util.convert_variables_to_constants( sess, graph.as_graph_def(), [output.op.name]) ### 将图写成.pb文件 tf.train.write_graph(output_graph_def, 'pretrained', model_name, as_text=False) ### 调用函数,生成.pd文件 export_graph(deeplab_model, 'model/model.ckpt-133958', 'model.pd') ### 读取 import tensorflow as tf import os def inference(): with tf.gfile.FastGFile('pretrained/model.pd', 'rb') as model_file: graph = tf.Graph() graph_def = tf.GraphDef() graph_def.ParseFromString(model_file.read()) [output_image] = tf.import_graph_def(graph_def, input_map={'input_image': images}, return_elements=['output_label:0'], name='output') sess = tf.Session() label = sess.run(output_image) return label labels = inference()
2.直接保存
import tensorflow as tf from tensorflow.python.framework import graph_util var1 = tf.Variable(1.0, dtype=tf.float32, name='v1') var2 = tf.Variable(2.0, dtype=tf.float32, name='v2') var3 = tf.Variable(2.0, dtype=tf.float32, name='v3') x = tf.placeholder(dtype=tf.float32, shape=None, name='x') x2 = tf.placeholder(dtype=tf.float32, shape=None, name='x2') addop = tf.add(x, x2, name='add') addop2 = tf.add(var1, var2, name='add2') addop3 = tf.add(var3, var2, name='add3') initop = tf.global_variables_initializer() model_path = './Test/model.pb' with tf.Session() as sess: sess.run(initop) print(sess.run(addop, feed_dict={x: 12, x2: 23})) output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['add', 'add2', 'add3']) # 将计算图写入到模型文件中 model_f = tf.gfile.FastGFile(model_path, mode="wb") model_f.write(output_graph_def.SerializeToString()) ####读取代码: import tensorflow as tf with tf.Session() as sess: model_f = tf.gfile.FastGFile("./Test/model.pb", mode='rb') graph_def = tf.GraphDef() graph_def.ParseFromString(model_f.read()) c = tf.import_graph_def(graph_def, return_elements=["add2:0"]) c2 = tf.import_graph_def(graph_def, return_elements=["add3:0"]) x, x2, c3 = tf.import_graph_def(graph_def, return_elements=["x:0", "x2:0", "add:0"]) print(sess.run(c)) print(sess.run(c2)) print(sess.run(c3, feed_dict={x: 23, x2: 2}))
相关推荐
Micusd 2020-11-19
xjtukuixing 2020-10-27
lybbb 2020-10-15
lybbb 2020-09-29
ghjk0 2020-09-24
yamaxifeng 2020-09-09
GDGYZL 2020-08-28
lybbb 2020-08-28
Icevivian 2020-08-25
comwayLi 2020-08-16
carbon0 2020-08-16
源式羽语 2020-08-09
sherry颖 2020-08-01
songbinxu 2020-07-19
sherry颖 2020-07-18
Niteowl 2020-07-15
Kindle君 2020-07-15
源式羽语 2020-07-04
源式羽语 2020-06-28