keras使用、函数功能

1. keras.engine.input_layer.Input()

def Input(shape=None, batch_shape=None,
 name=None, dtype=None, sparse=False,
 tensor=None):

用来实例化一个keras tensor

2. class Dense(Layer):  

keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer=‘glorot_uniform‘, bias_initializer=‘zeros‘, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

def __init__(self, units,
 activation=None,
 use_bias=True,
 kernel_initializer=‘glorot_uniform‘,
 bias_initializer=‘zeros‘,
 kernel_regularizer=None,
 bias_regularizer=None,
 activity_regularizer=None,
 kernel_constraint=None,
 bias_constraint=None,
 **kwargs):

Dense 是一个类,用来regular densely-connected NN layer.

 

3. from keras.models import Sequential, Model

4. from keras.utils.np_utils import to_categorical

categorical_labels = to_categorical(int_labels, num_classes=None)

说明:

例如如果你有10个类别,每一个样本的标签应该是一个10维的向量,该向量在对应有值的索引位置为1其余为0。

EXAMPLE:

假设y_test为100x1的向量,100表示样本数,标签为标量,这时候将标签扩充为10维的向量,即:y_test为100x10。10维向量中,值为1表示这个样本属于这个类别,其他9个地方的值都为0。

y_test = to_categorical(y_test, 10)

相关推荐