分布式锁原理及实现

什么是分布式锁?

控制分布式架构中多个模块访问的优先级

要介绍分布式锁,首先要提到与分布式锁相对应的是线程锁、进程锁。

线程锁:主要用来给方法、代码块加锁。当某个方法或代码使用锁,在同一时刻仅有一个线程执行该方法或该代码段。线程锁只在同一JVM中有效果,因为线程锁的实现在根本上是依靠线程之间共享内存实现的,比如synchronized是共享对象头,显示锁Lock是共享某个变量(state)。

进程锁:为了控制同一操作系统中多个进程访问某个共享资源,因为进程具有独立性,各个进程无法访问其他进程的资源,因此无法通过synchronized等线程锁实现进程锁。

分布式锁:当多个进程不在同一个系统中,用分布式锁控制多个进程对资源的访问。

分布式锁实现方式

1.基于数据库实现分布式锁

基于数据库表

往数据库中插入数据,插入成功获取访问资源的锁,访问完成,删除数据库中对应的记录,释放访问资源的锁
要实现分布式锁,最简单的方式可能就是直接创建一张锁表,然后通过操作该表中的数据来实现了。

当我们要锁住某个方法或资源时,我们就在该表中增加一条记录,想要释放锁的时候就删除这条记录。

创建这样一张数据库表:

 
分布式锁原理及实现
image


当我们想要锁住某个方法时,执行以下SQL:

 
分布式锁原理及实现
image


创建表示我们对method_name做了唯一性约束,这里如果有多个请求同时提交到数据库的话,数据库会保证只有一个操作可以成功,那么我们就可以认为操作成功的那个线程获得了该方法的锁
当方法执行完毕之后,想要释放锁的话,需要执行以下Sql:

 
分布式锁原理及实现
image


上面这种实现有以下几个问题:
1、这把锁强依赖数据库的可用性,数据库是一个单点,一旦数据库挂掉,会导致业务系统不可用。

2、这把锁没有失效时间,一旦解锁操作失败,就会导致锁记录一直在数据库中,其他线程无法再获得到锁。

3、这把锁只能是非阻塞的,因为数据的insert操作,一旦插入失败就会直接报错。没有获得锁的线程并不会进入排队队列,要想再次获得锁就要再次触发获得锁操作。

4、这把锁是非重入的,同一个线程在没有释放锁之前无法再次获得该锁。因为数据中数据已经存在了。
解决方法:

  1. 数据库是单点?搞两个数据库,数据之前双向同步。一旦挂掉快速切换到备库上
  2. 没有失效时间?只要做一个定时任务,每隔一定时间把数据库中的超时数据清理一遍。
  3. 非阻塞的?搞一个while循环,直到insert成功再返回成功。
  4. 非重入的?在数据库表中加个字段,记录当前获得锁的机器的主机信息和线程信息,那么下次再获取锁的时候先查询数据库,如果当前机器的主机信息和线程信息在数据库可以查到的话,直接把锁分配给他就可以了。

存在的问题:

  • 删除记录失败,会导致其他进程无法获取访问资源的锁
  • insert记录并不是重入锁

解决方法:

判断当前获取的锁是不是当前节点的
每个节点或者进程加一个id,删除失败获取节点的id是不是等于当前节点的id,是的话,可以继续去做,即可重入锁

基于数据库排他锁

除了可以通过增删操作数据表中的记录以外,其实还可以借助数据中自带的锁来实现分布式的锁。

我们还用刚刚创建的那张数据库表。可以通过数据库的排他锁来实现分布式锁。 基于MySql的InnoDB引擎,可以使用以下方法来实现加锁操作:

 
分布式锁原理及实现
image

在查询语句后面增加for update,数据库会在查询过程中给数据库表增加排他锁(这里再多提一句,InnoDB引擎在加锁的时候,只有通过索引进行检索的时候才会使用行级锁,否则会使用表级锁。这里我们希望使用行级锁,就要给method_name添加索引,值得注意的是,这个索引一定要创建成唯一索引,否则会出现多个重载方法之间无法同时被访问的问题。重载方法的话建议把参数类型也加上。)。当某条记录被加上排他锁之后,其他线程无法再在该行记录上增加排他锁。

我们可以认为获得排它锁的线程即可获得分布式锁,当获取到锁之后,可以执行方法的业务逻辑,执行完方法之后,再通过以下方法解锁:

 
分布式锁原理及实现
image

通过connection.commit()操作来释放锁。
这种方法可以有效的解决上面提到的无法释放锁和阻塞锁的问题。

阻塞锁? for update语句会在执行成功后立即返回,在执行失败时一直处于阻塞状态,直到成功。
锁定之后服务宕机,无法释放?使用这种方式,服务宕机之后数据库会自己把锁释放掉。
但是还是无法直接解决数据库单点和可重入问题。

这里还可能存在另外一个问题,虽然我们对method_name 使用了唯一索引,并且显示使用for update来使用行级锁。但是,MySql会对查询进行优化,即便在条件中使用了索引字段,但是否使用索引来检索数据是由 MySQL 通过判断不同执行计划的代价来决定的,如果 MySQL 认为全表扫效率更高,比如对一些很小的表,它就不会使用索引,这种情况下 InnoDB 将使用表锁,而不是行锁。如果发生这种情况就悲剧了

2. 基于Zookeeper实现分布式锁

ZooKeeper是一个为分布式应用提供一致性服务的开源组件,它内部是一个分层的文件系统目录树结构,规定同一个目录下只能有一个唯一文件名。基于ZooKeeper实现分布式锁的步骤如下:

(1)创建一个目录mylock;
(2)线程A想获取锁就在mylock目录下创建临时顺序节点;
(3)获取mylock目录下所有的子节点,然后获取比自己小的兄弟节点,如果不存在,则说明当前线程顺序号最小,获得锁;
(4)线程B获取所有节点,判断自己不是最小节点,设置监听比自己次小的节点;
(5)线程A处理完,删除自己的节点,线程B监听到变更事件,判断自己是不是最小的节点,如果是则获得锁。
可以直接使用zookeeper第三方库Curator客户端,这个客户端中封装了一个可重入的锁服务。

 
分布式锁原理及实现
image

Curator提供的InterProcessMutex是分布式锁的实现。acquire方法用户获取锁,release方法用于释放锁。

使用ZK实现的分布式锁好像完全符合了本文开头我们对一个分布式锁的所有期望。但是,其实并不是,Zookeeper实现的分布式锁其实存在一个缺点,那就是性能上可能并没有缓存服务那么高。因为每次在创建锁和释放锁的过程中,都要动态创建、销毁瞬时节点来实现锁功能。ZK中创建和删除节点只能通过Leader服务器来执行,然后将数据同不到所有的Follower机器上。

其实,使用Zookeeper也有可能带来并发问题,只是并不常见而已。考虑这样的情况,由于网络抖动,客户端可ZK集群的session连接断了,那么zk以为客户端挂了,就会删除临时节点,这时候其他客户端就可以获取到分布式锁了。就可能产生并发问题。这个问题不常见是因为zk有重试机制,一旦zk集群检测不到客户端的心跳,就会重试,Curator客户端支持多种重试策略。多次重试之后还不行的话才会删除临时节点。(所以,选择一个合适的重试策略也比较重要,要在锁的粒度和并发之间找一个平衡。)

3.基于缓存实现分布式锁

setnx

三种方案的比较

上面几种方式,哪种方式都无法做到完美。就像CAP一样,在复杂性、可靠性、性能等方面无法同时满足,所以,根据不同的应用场景选择最适合自己的才是王道。
从理解的难易程度角度(从低到高)
数据库 > 缓存 > Zookeeper
从实现的复杂性角度(从低到高)
Zookeeper >= 缓存 > 数据库
从性能角度(从高到低)
缓存 > Zookeeper >= 数据库
从可靠性角度(从高到低)
Zookeeper > 缓存 > 数据库
参考:

分布式锁的几种实现方式
分布式锁简单入门以及三种实现方式介绍
分布式锁的作用及实现(Redis)

相关推荐