LeetCode 272 Closest Binary Tree Traversal II 解题思路
原题网址:https://leetcode.com/problems...
Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.
Note:
Given target value is a floating point.
You may assume k is always valid, that is: k ≤ total nodes.
You are guaranteed to have only one unique set of k values in the BST that are closest to the target.
Follow up:
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?
Hint:
Consider implement these two helper functions:
getPredecessor(N), which returns the next smaller node to N.
getSuccessor(N), which returns the next larger node to N.
Try to assume that each node has a parent pointer, it makes the problem much easier.
Without parent pointer we just need to keep track of the path from the root to the current node using a stack.
You would need two stacks to track the path in finding predecessor and successor node separately.
题意:在二叉搜索树当中找到离target最近的K个数。
解题思路:
由于二叉搜索数的inorder中序遍历是有序的,比如例子中的树,中序遍历为[1,2,3,4,5]。我们可以利用这一特性,初始化一个双端队列Deque,用来存放k个数,然后用递归的方式,先走到the most left(也就是例子中的1),不断的向Deque中加入元素,直到元素装满,也就是Deque的size()到k个了,将当前元素与target的距离和队列头部与target的距离进行对比,如果当前元素的距离更小,则用Deque的pollFirst()方法将头部吐出,把当前元素从addLast()加入。
Example: Input: root = [4,2,5,1,3], target = 3.714286, and k = 2 4 / \ 2 5 / \ 1 3 Output: [4,3]
代码如下:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { /** *直接在中序遍历的过程中完成比较,当遍历到一个节点时, 如果此时结果数组不到k个,我们直接将此节点值加入res中, 如果该节点值和目标值的差值的绝对值小于res的首元素和目标值差值的绝对值, 说明当前值更靠近目标值,则将首元素删除,末尾加上当前节点值, 反之的话说明当前值比res中所有的值都更偏离目标值, 由于中序遍历的特性,之后的值会更加的遍历,所以此时直接返回最终结果即可, */ public List<Integer> closestKValues(TreeNode root, double target, int k) { Deque<Integer> deque = new ArrayDeque<>(); inorder(root, target, k, deque); List<Integer> res = new ArrayList<>(deque); return res; } private void inorder(TreeNode root, double target, int k, Deque<Integer> deque) { if (root == null) return; inorder(root.left, target, k, deque); if (deque.size() < k) { deque.offer(root.val); } else if (Math.abs(root.val - target) < Math.abs(deque.peekFirst()-target) ) { deque.pollFirst(); deque.addLast(root.val); } inorder(root.right, target, k, deque); } }
还有一种用Stack完成的方式,思路和递归相同,但是iterative的写法,也有必要掌握,必须把控Stack是否为空的情况,当前的node为null,但是stack中仍然有元素,依然需要进行比较。
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public List<Integer> closestKValues(TreeNode root, double target, int k) { Deque<Integer> deque = new ArrayDeque<>(); Stack<TreeNode> stack = new Stack<>(); TreeNode cur = root; while(cur != null || !stack.isEmpty()) { while(cur != null) { stack.push(cur); cur = cur.left; } cur = stack.pop(); if (deque.size() < k) { deque.addLast(cur.val); } else if (Math.abs(cur.val - target) < Math.abs(deque.peekFirst() - target)) { deque.pollFirst(); deque.addLast(cur.val); } cur = cur.right; } List<Integer> res = new ArrayList<>(deque); return res; } }