浅谈Pandas中map, applymap and apply的区别
1.apply()
当想让方程作用在一维的向量上时,可以使用apply来完成,如下所示
In [116]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon']) In [117]: frame Out[117]: b d e Utah -0.029638 1.081563 1.280300 Ohio 0.647747 0.831136 -1.549481 Texas 0.513416 -0.884417 0.195343 Oregon -0.485454 -0.477388 -0.309548 In [118]: f = lambda x: x.max() - x.min() In [119]: frame.apply(f) Out[119]: b 1.133201 d 1.965980 e 2.829781 dtype: float64
但是因为大多数的列表统计方程 (比如 sum 和 mean)是DataFrame的函数,所以apply很多时候不是必须的
2.applymap()
如果想让方程作用于DataFrame中的每一个元素,可以使用applymap().用法如下所示
In [120]: format = lambda x: '%.2f' % x In [121]: frame.applymap(format) Out[121]: b d e Utah -0.03 1.08 1.28 Ohio 0.65 0.83 -1.55 Texas 0.51 -0.88 0.20 Oregon -0.49 -0.48 -0.31
3.map()
map()只要是作用将函数作用于一个Series的每一个元素,用法如下所示
In [122]: frame['e'].map(format) Out[122]: Utah 1.28 Ohio -1.55 Texas 0.20 Oregon -0.31 Name: e, dtype: object
总的来说就是apply()是一种让函数作用于列或者行操作,applymap()是一种让函数作用于DataFrame每一个元素的操作,而map是一种让函数作用于Series每一个元素的操作。
相关推荐
roamer 2020-10-29
三石 2020-08-23
QianYanDai 2020-08-16
mmmjyjy 2020-07-16
QianYanDai 2020-07-05
QianYanDai 2020-07-05
jiahaohappy 2020-06-21
QianYanDai 2020-06-16
zhangxiaojiakele 2020-05-25
jzlixiao 2020-05-15
jiahaohappy 2020-05-12
zhangxiaojiakele 2020-05-11
jzlixiao 2020-05-08
Series是一种类似于一维数组的对象,由一组数据以及一组与之对应的索引组成。 index: 索引序列,必须是唯一的,且与数据的长度相同. 如果没有传入索引参数,则默认会自动创建一个从0~N的整数索引
jzlixiao 2020-05-09
三石 2020-10-30
三石 2020-10-29
wangquannuaa 2020-10-15
wangquannuaa 2020-09-29
jzlixiao 2020-09-15