数据结构-堆排序

1、堆排序

是指利用 二叉堆 这种数据结构所设计的一种排序算法。堆是一个近似 完全二叉树 的结构,并同时满足 堆积的性质 :即子节点的键值或索引总是小于(或者大于)它的父节点。

完全二叉树的重要性质:

数据结构-堆排序

二叉堆分以下两个类型:

1.最大堆:最大堆任何一个父节点的值,都大于等于它左右孩子节点的值。[10, 8, 9, 7, 5, 4, 6, 3, 2]:

数据结构-堆排序

2.最小堆:最小堆任何一个父节点的值,都小于等于它左右孩子节点的值。[1, 3, 2, 6, 5, 7, 8, 9, 10]:

数据结构-堆排序

堆排序的算法步骤如下:

  1. 把无序数列构建成二叉堆;

  2. 循环删除堆顶元素,替换到二叉堆的末尾,调整堆产生新的堆顶。

数据结构-堆排序

void swap(int K[], int i, int j)
{
    int temp = K[i];
    K[i] = K[j];
    K[j] = temp;
}

//大顶堆的构造,传入的i是父节点
void HeapAdjust(int k[],int p,int n)
{
    int i,temp;
    temp = k[p];
    for (i = 2 * p; i <= n;i*=2)    //逐渐去找左右孩子结点
    {
        //找到两个孩子结点中最大的
        if (i < n&&k[i] < k[i + 1])
            i++;
        //父节点和孩子最大的进行判断,调整,变为最大堆
        if (temp >= k[i])
            break;
        //将父节点数据变为最大的,将原来的数据还是放在temp中,
        k[p] = k[i];    //若是孩子结点的数据更大,我们会将数据上移,为他插入的点提供位置
        p = i;          //这是调整后的改变位置的子节点位置,这里可能需要再次的调整->for
    }
    //当我们在for循环中找到了p子树中,满足条件的点,我们就加入数据到该点p,注意:p点原来数据已经被上移动了
    //若没有找到,就是相当于对其值不变
    //插入
    k[p] = temp;
}

//大顶堆排序
void HeapSort(int k[], int n)
{
    int i;
    //首先将无序数列转换为大顶堆
    for (i = n / 2; i > 0;i--)    //注意由于是完全二叉树,所以我们从一半向前构造,传入父节点
        HeapAdjust(k, i, n);

    //上面大顶堆已经构造完成,我们现在需要排序,每次将最大的元素放入最后
    //然后将剩余元素重新构造大顶堆,将最大元素放在剩余最后
    for (i = n; i >1;i--)
    {
        swap(k, 1, i);           //逐渐将根结点(最大元素)交换至最后
        HeapAdjust(k, 1, i - 1);  //再次调整为最大堆
    }
}


int main()
{
    int i;
    int a[11] = {-1, 5, 2, 6, 0, 3, 9, 1, 7, 4, 8 };
    HeapSort(a, 10);

    for (i = 1; i <= 10; i++)
        printf("%d ", a[i]);

    system("pause");
    return 0;
}

 https://www.cnblogs.com/ssyfj/p/9512451.html