数据结构学习笔记-二叉树的遍历(JAVA)

二叉树是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树的形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。

两种遍历:

递归遍历和层次遍历.

前序:根左右

中序:左根右

后序:左右根

publicclassTree

{

publicTreemLeft;

publicTreemRight;

privateDatamData;

publicList<Tree>treeList=newArrayList<Tree>();

publicstaticfinalintMAX=40;

//层次遍历时保存各个节点

Tree[]elements=newTree[MAX];

//层次遍历时队首

intfront;

//层次遍历时队尾

intrear;

publicTree(Treeleft,Treeright,Datadata)

{

this.mLeft=left;

this.mRight=right;

this.mData=data;

}

publicTree(Treeleft,Treeright,Stringdata)

{

this.mLeft=left;

this.mRight=right;

this.mData=newData(data);

}

//前序遍历,根左右

publicvoidpreOrder(Treeparent)

{

if(parent==null)

return;

System.out.print(parent.mData.desc+"");

preOrder(parent.mLeft);

preOrder(parent.mRight);

}

//中序遍历,左根右

publicvoidinOrder(Treeparent)

{

if(parent==null)

return;

inOrder(parent.mLeft);

System.out.print(parent.mData.desc+"");

inOrder(parent.mRight);

}

//后序遍历,左右根

publicvoidpostOrder(Treeparent)

{

if(parent==null)

return;

postOrder(parent.mLeft);

postOrder(parent.mRight);

System.out.print(parent.mData.desc+"");

}

//遍历treeList并生成下次要遍历的

publicvoidlayerOrder()

{

if(treeList.isEmpty())

return;

List<Tree>buff=newArrayList<Tree>();

for(Treet:treeList)

{

if(t!=null)

{

System.out.print(t.mData.desc+"");

buff.add(t.mLeft);

buff.add(t.mRight);

}

}

treeList.clear();

if(!buff.isEmpty())

{

treeList.addAll(buff);

layerOrder();

}

}

//另外一种利用数组层次遍历的实现

publicvoidlayerOrder1(Treeparent)

{

elements[0]=parent;

front=0;

rear=1;

while(front<rear)

{

if(elements[front].mData!=null)

{

System.out.print(elements[front].mData.desc+"");

if(elements[front].mLeft!=null)

{

elements[rear++]=elements[front].mLeft;

}

if(elements[front].mRight!=null)

{

elements[rear++]=elements[front].mRight;

}

front++;

}

}

}

publicstaticclassData

{

publicStringdesc;

publicData(Strings)

{

this.desc=s;

}

@Override

publicStringtoString()

{

returndesc;

}

}

}

publicclassTreeMain

{

publicstaticvoidmain(String[]args)

{

Treed=newTree(null,null,"D");

Treee=newTree(null,null,"E");

Treef=newTree(null,null,"F");

Treeg=newTree(null,null,"G");

Treeb=newTree(d,e,"B");

Treec=newTree(f,g,"C");

Treea=newTree(b,c,"A");

a.preOrder(a);

System.out.println("");

a.inOrder(a);

System.out.println("");

a.postOrder(a);

System.out.println("");

a.treeList.add(a);

a.layerOrder();

}

}

相关推荐