一步步拆解 LeakCanary
前言
内存泄露,一直是我们性能优化方面的重点。今天,就让我们一起来拆解 LeakCanary,一步步理解它的原理。
原理概览
讲解 LeakCannary 原理之前,我们先来说一下它的主要原理,给大家吃颗定心丸,其实挺简单的,大概可以分为以下几步:
- 监听 Activity 的生命周期
- 在 onDestroy 的时候,创建相应的 Refrence 和 RefrenceQueue,并启动后台进程去检测
- 一段时间之后,从 RefrenceQueue 读取,若读取不到相应 activity 的 Refrence,有可能发生泄露了,这个时候,再促发 gc,一段时间之后,再去读取,若在从 RefrenceQueue 还是读取不到相应 activity 的 refrence,可以断定是发生内存泄露了
- 发生内存泄露之后,dump,分析 hprof 文件,找到泄露路径(使用 haha 库分析),发送到通知栏
原理分析
LeakCanary#Install
public static RefWatcher install(Application application) {
return refWatcher(application).listenerServiceClass(DisplayLeakService.class)
.excludedRefs(AndroidExcludedRefs.createAppDefaults().build())
.buildAndInstall();
}
listenerServiceClass 方法
public AndroidRefWatcherBuilder listenerServiceClass(
Class<? extends AbstractAnalysisResultService> listenerServiceClass) {
return heapDumpListener(new ServiceHeapDumpListener(context, listenerServiceClass));
}
public final class ServiceHeapDumpListener implements HeapDump.Listener {
private final Context context;
private final Class<? extends AbstractAnalysisResultService> listenerServiceClass;
public ServiceHeapDumpListener(Context context,
Class<? extends AbstractAnalysisResultService> listenerServiceClass) {
// 启动后台服务监听
setEnabled(context, listenerServiceClass, true);
// 启动 HeapAnalyzerService ,用来分析 dump 文件
setEnabled(context, HeapAnalyzerService.class, true);
this.listenerServiceClass = checkNotNull(listenerServiceClass, "listenerServiceClass");
this.context = checkNotNull(context, "context").getApplicationContext();
}
----
}
listenerServiceClass() 方法绑定了一个后台服务 DisplayLeakService,这个服务主要用来分析内存泄漏结果并发送通知。你可以继承并重写这个类来进行一些自定义操作,比如上传分析结果等。
RefWatcherBuilder.excludedRefs
public final T excludedRefs(ExcludedRefs excludedRefs) {
this.excludedRefs = excludedRefs;
return self();
}
AndroidExcludedRefs.java
/**
* This returns the references in the leak path that can be ignored for app developers. This
* doesn't mean there is no memory leak, to the contrary. However, some leaks are caused by bugs
* in AOSP or manufacturer forks of AOSP. In such cases, there is very little we can do as app
* developers except by resorting to serious hacks, so we remove the noise caused by those leaks.
*/
public static ExcludedRefs.Builder createAppDefaults() {
return createBuilder(EnumSet.allOf(AndroidExcludedRefs.class));
}
public static ExcludedRefs.Builder createBuilder(EnumSet<AndroidExcludedRefs> refs) {
ExcludedRefs.Builder excluded = ExcludedRefs.builder();
for (AndroidExcludedRefs ref : refs) {
if (ref.applies) {
ref.add(excluded);
((ExcludedRefs.BuilderWithParams) excluded).named(ref.name());
}
}
return excluded;
}
excludedRefs() 方法定义了一些对于开发者可以忽略的路径,意思就是即使这里发生了内存泄漏,LeakCanary 也不会弹出通知。这大多是系统 Bug 导致的,无需用户进行处理。
AndroidRefWatcherBuilder.buildAndInstall
buildAndInstall 所做的工作,调用 build 构建 refWatcher,判断 refWatcher 是否 DISABLED,若不是 DISABLED 状态,调用 install 方法,并将 refWatcher 返回回去
/**
* Creates a {@link RefWatcher} instance and starts watching activity references (on ICS+).
*/
public RefWatcher buildAndInstall() {
// 构建 refWatcher 对象
RefWatcher refWatcher = build();
// 判断是否 DISABLED,若不是 DISABLED 状态,调用
if (refWatcher != DISABLED) {
LeakCanary.enableDisplayLeakActivity(context);
ActivityRefWatcher.install((Application) context, refWatcher);
}
return refWatcher;
}
了解 build 方法 之前,我们先来看一下 RefWatcherBuilder 是什么东东?
RefWatcherBuilder
public class RefWatcherBuilder<T extends RefWatcherBuilder<T>> {
private ExcludedRefs excludedRefs;
private HeapDump.Listener heapDumpListener;
private DebuggerControl debuggerControl;
private HeapDumper heapDumper;
private WatchExecutor watchExecutor;
private GcTrigger gcTrigger;
/** Creates a {@link RefWatcher}. */
public final RefWatcher build() {
if (isDisabled()) {
return RefWatcher.DISABLED;
}
ExcludedRefs excludedRefs = this.excludedRefs;
if (excludedRefs == null) {
excludedRefs = defaultExcludedRefs();
}
HeapDump.Listener heapDumpListener = this.heapDumpListener;
if (heapDumpListener == null) {
heapDumpListener = defaultHeapDumpListener();
}
DebuggerControl debuggerControl = this.debuggerControl;
if (debuggerControl == null) {
debuggerControl = defaultDebuggerControl();
}
HeapDumper heapDumper = this.heapDumper;
if (heapDumper == null) {
heapDumper = defaultHeapDumper();
}
WatchExecutor watchExecutor = this.watchExecutor;
if (watchExecutor == null) {
watchExecutor = defaultWatchExecutor();
}
GcTrigger gcTrigger = this.gcTrigger;
if (gcTrigger == null) {
gcTrigger = defaultGcTrigger();
}
return new RefWatcher(watchExecutor, debuggerControl, gcTrigger, heapDumper, heapDumpListener,
excludedRefs);
}
build 方法看到这里你是不是有一种很眼熟的感觉,没错,它运用了建造者模式,与我们 Android 中的 AlertDialog.build 同出一辙。
RefWatcherBuilder 主要有几个重要的成员变量
- watchExecutor : 线程控制器,在 onDestroy() 之后并且主线程空闲时执行内存泄漏检测
- debuggerControl : 判断是否处于调试模式,调试模式中不会进行内存泄漏检测
- gcTrigger : 用于 GC,watchExecutor 首次检测到可能的内存泄漏,会主动进行 GC,GC 之后会再检测一次,仍然泄漏的判定为内存泄漏,进行后续操作
- heapDumper : dump 内存泄漏处的 heap 信息,写入 hprof 文件
- heapDumpListener : 解析完 hprof 文件,进行回调,并通知 DisplayLeakService 弹出提醒
- excludedRefs : 排除可以忽略的泄漏路径
接下来,我们一起来看一下 ActivityRefWatcher.install 方法
ActivityRefWatcher.install((Application) context, refWatcher);
public final class ActivityRefWatcher {
/** @deprecated Use {@link #install(Application, RefWatcher)}. */
@Deprecated
public static void installOnIcsPlus(Application application, RefWatcher refWatcher) {
install(application, refWatcher);
}
public static void install(Application application, RefWatcher refWatcher) {
new ActivityRefWatcher(application, refWatcher).watchActivities();
}
private final Application.ActivityLifecycleCallbacks lifecycleCallbacks =
new Application.ActivityLifecycleCallbacks() {
@Override
public void onActivityCreated(Activity activity, Bundle savedInstanceState) {
}
@Override
public void onActivityStarted(Activity activity) {
}
@Override
public void onActivityResumed(Activity activity) {
}
@Override
public void onActivityPaused(Activity activity) {
}
@Override
public void onActivityStopped(Activity activity) {
}
@Override
public void onActivitySaveInstanceState(Activity activity, Bundle outState) {
}
@Override
public void onActivityDestroyed(Activity activity) {
ActivityRefWatcher.this.onActivityDestroyed(activity);
}
};
private final Application application;
private final RefWatcher refWatcher;
/**
* Constructs an {@link ActivityRefWatcher} that will make sure the activities are not leaking
* after they have been destroyed.
*/
public ActivityRefWatcher(Application application, RefWatcher refWatcher) {
this.application = checkNotNull(application, "application");
this.refWatcher = checkNotNull(refWatcher, "refWatcher");
}
void onActivityDestroyed(Activity activity) {
refWatcher.watch(activity);
}
public void watchActivities() {
// Make sure you don't get installed twice.
stopWatchingActivities();
application.registerActivityLifecycleCallbacks(lifecycleCallbacks);
}
public void stopWatchingActivities() {
application.unregisterActivityLifecycleCallbacks(lifecycleCallbacks);
}
}
install 来说,主要做以下事情
- 创建 ActivityRefWatcher,并调用 watchActivities 监听 activity 的生命周期
- 在 activity 被销毁的时候,会回调 lifecycleCallbacks 的 onActivityDestroyed 方法,这时候会调用 onActivityDestroyed 去分析,而 onActivityDestroyed 方法又会回调 refWatcher.watch(activity)
我们回到 refWatcher.watch 方法
public void watch(Object watchedReference) {
watch(watchedReference, "");
}
/**
* Watches the provided references and checks if it can be GCed. This method is non blocking,
* the check is done on the {@link WatchExecutor} this {@link RefWatcher} has been constructed
* with.
*
* @param referenceName An logical identifier for the watched object.
*/
public void watch(Object watchedReference, String referenceName) {
if (this == DISABLED) {
return;
}
checkNotNull(watchedReference, "watchedReference");
checkNotNull(referenceName, "referenceName");
final long watchStartNanoTime = System.nanoTime();
// 保证 key 的唯一性
String key = UUID.randomUUID().toString();
// 添加到 set 集合中
retainedKeys.add(key);
// 穿件 KeyedWeakReference 对象
final KeyedWeakReference reference =
new KeyedWeakReference(watchedReference, key, referenceName, queue);
ensureGoneAsync(watchStartNanoTime, reference);
}
- retainedKeys : 一个 Set 集合,每个检测的对象都对应着一个唯一的 key,存储在 retainedKeys 中
- KeyedWeakReference : 自定义的弱引用,持有检测对象和对用的 key 值
我们先来看一下 KeyedWeakReference ,可以看到 KeyedWeakReference 继承于 WeakReference,并定义了 key,name 字段
final class KeyedWeakReference extends WeakReference<Object> {
public final String key;
public final String name;
KeyedWeakReference(Object referent, String key, String name,
ReferenceQueue<Object> referenceQueue) {
super(checkNotNull(referent, "referent"), checkNotNull(referenceQueue, "referenceQueue"));
this.key = checkNotNull(key, "key");
this.name = checkNotNull(name, "name");
}
}
- key 对应的 key 值名称
- referenceQueue 引用队列,当结合 Refrence 使用的时候,垃圾回收器回收的时候,会把相应的对象加入到 refrenceQueue 中。
弱引用和引用队列 ReferenceQueue 联合使用时,如果弱引用持有的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。即 KeyedWeakReference 持有的 Activity 对象如果被垃圾回收,该对象就会加入到引用队列 queue 中。
ensureGoneAsync 方法
private void ensureGoneAsync(final long watchStartNanoTime, final KeyedWeakReference reference) {
watchExecutor.execute(new Retryable() {
@Override
public Retryable.Result run() {
return ensureGone(reference, watchStartNanoTime);
}
});
}
ensureGoneAsync 这个方法,在 watchExecutor 的回调里面执行了 ensureGone 方法,watchExecutor 是 AndroidWatchExecutor 的实例。
接下来,我们一起来看一下 watchExecutor,主要关注 execute 方法
watchExecutor
public final class AndroidWatchExecutor implements WatchExecutor {
static final String LEAK_CANARY_THREAD_NAME = "LeakCanary-Heap-Dump";
private final Handler mainHandler;
private final Handler backgroundHandler;
private final long initialDelayMillis;
private final long maxBackoffFactor;
public AndroidWatchExecutor(long initialDelayMillis) {
mainHandler = new Handler(Looper.getMainLooper());
HandlerThread handlerThread = new HandlerThread(LEAK_CANARY_THREAD_NAME);
handlerThread.start();
backgroundHandler = new Handler(handlerThread.getLooper());
this.initialDelayMillis = initialDelayMillis;
maxBackoffFactor = Long.MAX_VALUE / initialDelayMillis;
}
@Override
public void execute(Retryable retryable) {
// 当前线程是主线程
if (Looper.getMainLooper().getThread() == Thread.currentThread()) {
waitForIdle(retryable, 0);
} else { // 当前线程不是主线程
postWaitForIdle(retryable, 0);
}
}
--------
}
execute 方法,首先判断是否是主线程,如果是主线程,调用 waitForIdle 方法,等待空闲的时候执行,如果不是主线程,调用 postWaitForIdle 方法。我们一起来看一下 postWaitForIdle 和 waitForIdle 方法。
// 调用 mainHandler 的 post 方法,,确保在主线程中执行
void postWaitForIdle(final Retryable retryable, final int failedAttempts) {
mainHandler.post(new Runnable() {
@Override
public void run() {
waitForIdle(retryable, failedAttempts);
}
});
}
// 当当前线程 looper 空闲的时候执行
void waitForIdle(final Retryable retryable, final int failedAttempts) {
// This needs to be called from the main thread.
// 当 looper 空闲的时候,会回调 queueIdle 方法
Looper.myQueue().addIdleHandler(new MessageQueue.IdleHandler() {
@Override public boolean queueIdle() {
postToBackgroundWithDelay(retryable, failedAttempts);
return false;
}
});
}
可以看到 postWaitForIdle 方法其实是 调用 mainHandler 的 post 方法,,确保在主线程中执行,之后再 runnable 的 run 方法在调用 waitForIdle 方法。而 waitForIdle 方法是在等当前 looper 空闲之后,执行 postToBackgroundWithDelay 方法
void postToBackgroundWithDelay(final Retryable retryable, final int failedAttempts) {
// 取 Math.pow(2, failedAttempts), maxBackoffFactor 的最小值,maxBackoffFactor = Long.MAX_VALUE / 5,
// 第一次执行的时候 failedAttempts 是 0 ,所以 exponentialBackoffFactor 是1
long exponentialBackoffFactor = (long) Math.min(Math.pow(2, failedAttempts), maxBackoffFactor);
// initialDelayMillis 的默认值是 5
long delayMillis = initialDelayMillis * exponentialBackoffFactor;
// 所以第一次延迟执行的时候是 5s,若
backgroundHandler.postDelayed(new Runnable() {
@Override public void run() {
Retryable.Result result = retryable.run();
// 过 result == RETRY,再次调用 postWaitForIdle,下一次的 delayMillis= 上一次的 delayMillis *2;
// 正常情况下,不会返回 RETRY,当 heapDumpFile == RETRY_LATER (即 dump heap 失败的时候),会返回 RETRY
if (result == RETRY) {
postWaitForIdle(retryable, failedAttempts + 1);
}
}
}, delayMillis);
}
postToBackgroundWithDelay 方法有点类似递归,正常情况下,若 retryable.run() 返回的结果不等于 RETRY,只会执行一次。若 retryable.run() 返回 RETRY,则会执行多次,退出的条件是 retryable.run() 返回结果不等于 RETRY;
delay 的时间 取 Math.pow(2, failedAttempts), maxBackoffFactor 两个数的最小值,maxBackoffFactor = Long.MAX_VALUE / 5,而,第一次执行的时候 failedAttempts 是 0 ,所以 exponentialBackoffFactor 是 1,即 delayMillis = initialDelayMillis * exponentialBackoffFactor= 5*1=5;
因此,综合上面的例子,第一次执行的时间是 activity destroy 之后 5s。
OK,我们回到 ensureGone 方法,这才是我们的重点
@SuppressWarnings("ReferenceEquality") // Explicitly checking for named null.
Retryable.Result ensureGone(final KeyedWeakReference reference, final long watchStartNanoTime) {
long gcStartNanoTime = System.nanoTime();
long watchDurationMs = NANOSECONDS.toMillis(gcStartNanoTime - watchStartNanoTime);
// 移除已经被回收的引用
removeWeaklyReachableReferences();
if (debuggerControl.isDebuggerAttached()) {
// The debugger can create false leaks.
return RETRY;
}
// 判断 reference,即 activity 是否内回收了,若被回收了,直接返回
if (gone(reference)) {
return DONE;
}
// 调用 gc 方法进行垃圾回收
gcTrigger.runGc();
// 移除已经被回收的引用
removeWeaklyReachableReferences();
// activity 还没有被回收,证明发生内存泄露
if (!gone(reference)) {
long startDumpHeap = System.nanoTime();
long gcDurationMs = NANOSECONDS.toMillis(startDumpHeap - gcStartNanoTime);
// dump heap,并生成相应的 hprof 文件
File heapDumpFile = heapDumper.dumpHeap();
if (heapDumpFile == RETRY_LATER) {// dump the heap 失败的时候
// Could not dump the heap.
return RETRY;
}
long heapDumpDurationMs = NANOSECONDS.toMillis(System.nanoTime() - startDumpHeap);
// 分析 hprof 文件
heapdumpListener.analyze(
new HeapDump(heapDumpFile, reference.key, reference.name, excludedRefs, watchDurationMs,
gcDurationMs, heapDumpDurationMs));
}
return DONE;
}
removeWeaklyReachableReferences 方法
private void removeWeaklyReachableReferences() {
// WeakReferences are enqueued as soon as the object to which they point to becomes weakly
// reachable. This is before finalization or garbage collection has actually happened.
KeyedWeakReference ref;
// 遍历 queue ,并从 retainedKeys set 集合中移除
while ((ref = (KeyedWeakReference) queue.poll()) != null) {
retainedKeys.remove(ref.key);
}
}
gone(reference) 方法,判断 retainedKeys set 集合,是否还含有 reference,若没有,证明已经被回收了;若含有,可能已经发生内存泄露。因为我们知道 refrence 被回收的时候,会被加进 queue 里面,值调用 gone 方法判断的时候,我们已经遍历 queue 移除掉 retainedKeys 里面的 refrence,若含有,证明 refrence 没有被回收,之所以说可能发生内存泄露,是因为 gc 回收器可能还没有回收。
private boolean gone(KeyedWeakReference reference) {
return !retainedKeys.contains(reference.key);
}
gcTrigger.runGc() 的主要作用是促发 gc,进行回收。
GcTrigger DEFAULT = new GcTrigger() {
@Override
public void runGc() {
// Code taken from AOSP FinalizationTest:
// https://android.googlesource.com/platform/libcore/+/master/support/src/test/java/libcore/
// java/lang/ref/FinalizationTester.java
// System.gc() does not garbage collect every time. Runtime.gc() is
// more likely to perfom a gc.
Runtime.getRuntime().gc();
enqueueReferences();
System.runFinalization();
}
private void enqueueReferences() {
// Hack. We don't have a programmatic way to wait for the reference queue daemon to move
// references to the appropriate queues.
try {
Thread.sleep(100);
} catch (InterruptedException e) {
throw new AssertionError();
}
}
};
ok,我们在回到 ensureGoneAsync 方法,整理一下它的流程
- Activity onDestroy 5s 之后,检测 activity 的弱引用 refrence 有没有被回收,若被回收,证明没有发生内存泄露,若没有被回收,继续下面流程
- 调用 gcTrigger.runGc() 促发垃圾回收机器进行回收
- 再次检测 activity 的弱引用 refrence 有没有被回收,若被回收,证明没有发生内存泄露,若没有被回收,则认为发生内存泄露
- dump heap,生成 hprof。
- 分析 hprof 文件,找到泄露路径,发送到通知栏
关于如何 dump 和 如何解析hprof
- 关于如何 dump
这里主要是调用 AndroidHeapDumper 的 dumpHeap 方法,而里面比较重要的是调用 Debug.dumpHprofData 生成 hprof 文件。
AndroidHeapDumper#dumpHeap
@SuppressWarnings("ReferenceEquality") // Explicitly checking for named null.
@Override
public File dumpHeap() {
File heapDumpFile = leakDirectoryProvider.newHeapDumpFile();
if (heapDumpFile == RETRY_LATER) {
return RETRY_LATER;
}
FutureResult<Toast> waitingForToast = new FutureResult<>();
showToast(waitingForToast);
if (!waitingForToast.wait(5, SECONDS)) {
CanaryLog.d("Did not dump heap, too much time waiting for Toast.");
return RETRY_LATER;
}
Toast toast = waitingForToast.get();
try {
Debug.dumpHprofData(heapDumpFile.getAbsolutePath());
cancelToast(toast);
return heapDumpFile;
} catch (Exception e) {
CanaryLog.d(e, "Could not dump heap");
// Abort heap dump
return RETRY_LATER;
}
}
- 如何解析hprof
当发生了泄漏就会生成 HeapDump 对象然后就会进入下面这个方法去启动 HeapAnalyzerServiceService 来进行分析
@Override
public void analyze(HeapDump heapDump) {
checkNotNull(heapDump, "heapDump");
HeapAnalyzerService.runAnalysis(context, heapDump, listenerServiceClass);
}
关于如解析 hprof,请自行了解 haha 库的用法即原理,地址如下:
https://github.com/square/haha
public AnalysisResult checkForLeak(File heapDumpFile, String referenceKey) {
long analysisStartNanoTime = System.nanoTime();
if (!heapDumpFile.exists()) {
Exception exception = new IllegalArgumentException("File does not exist: " + heapDumpFile);
return failure(exception, since(analysisStartNanoTime));
}
try {
HprofBuffer buffer = new MemoryMappedFileBuffer(heapDumpFile);
HprofParser parser = new HprofParser(buffer);
Snapshot snapshot = parser.parse();
deduplicateGcRoots(snapshot);
Instance leakingRef = findLeakingReference(referenceKey, snapshot);
// False alarm, weak reference was cleared in between key check and heap dump.
if (leakingRef == null) {
return noLeak(since(analysisStartNanoTime));
}
return findLeakTrace(analysisStartNanoTime, snapshot, leakingRef);
} catch (Throwable e) {
return failure(e, since(analysisStartNanoTime));
}
}
经过解析之后机会把数据传递到 DisplayLeakService ,Service 会根据传入进来的数据发送通知栏通知,当你点击对应的通知进入DisplayLeakActivity界面就能显示泄漏日志了。
总结
LeakCanary 的原理总结如下
- 监听 Activity 的生命周期
- 在 onDestroy 的时候,创建相应的 Refrence 和 RefrenceQueue,并启动后台进程去检测
- 一段时间之后,从 RefrenceQueue 读取,若读取不到相应 activity 的 Refrence,有可能发生泄露了,这个时候,再促发 gc,一段时间之后,再去读取,若在从 RefrenceQueue 还是读取不到相应 activity 的 refrence,可以断定是发生内存泄露了
- 发生内存泄露之后,dump,分析 hprof 文件,找到泄露路径(使用 haha 库分析)
其中,比较重要的是如何确定是否发生内存泄露,而如何确定发生内存泄露最主要的原理是通过 Refrence 和 RefrenceQueue。悄悄地提醒你一下,面试必备。
最后,用一张图片来表示 leakCannary 的执行流程。